
The Astronomical Journal, 141:159 (11pp), 2011 May doi:10.1088/0004-6256/141/5/159
C© 2011. The American Astronomical Society. All rights reserved. Printed in the U.S.A.

OBSERVED BINARY FRACTION SETS LIMITS ON THE EXTENT OF COLLISIONAL GRINDING
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ABSTRACT

The size distribution in the cold classical Kuiper Belt (KB) can be approximated by two idealized power laws:
one with steep slope for radii R > R∗ and one with shallow slope for R < R∗, where R∗ ∼ 25–50 km. Previous
works suggested that the size frequency distribution (SFD) rollover at R∗ can be the result of extensive collisional
grinding in the KB that led to the catastrophic disruption of most bodies with R < R∗. Here, we use a new code to
test the effect of collisions in the KB. We find that the observed rollover could indeed be explained by collisional
grinding provided that the initial mass in large bodies was much larger than the one in the present KB and was
dynamically depleted. In addition to the size distribution changes, our code also tracks the effects of collisions on
binary systems. We find that it is generally easier to dissolve wide binary systems, such as the ones existing in the
cold KB today, than to catastrophically disrupt objects with R ∼ R∗. Thus, the binary survival sets important limits
on the extent of collisional grinding in the KB. We find that the extensive collisional grinding required to produce
the SFD rollover at R∗ would imply a strong gradient of the binary fraction with R and separation, because it is
generally easier to dissolve binaries with small components and/or those with wide orbits. The expected binary
fraction for R � R∗ is �0.1. The present observational data do not show such a gradient. Instead, they suggest a
large binary fraction of ∼0.4 for R = 30–40 km. This may indicate that the rollover was not produced by disruptive
collisions, but is instead a fossil remnant of the KB object formation process.
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1. INTRODUCTION

The cold classical Kuiper Belt, hereafter cold CKB, is a
population of trans-Neptunian bodies dynamically defined as
having orbits with semimajor axis a = 42–48 AU, perihelion
distances that are large enough to avoid close encounters to
Neptune, and low inclinations (i � 5◦).

Cold CKB objects (cold CKBOs) show several properties
that distinguish them from other populations in the trans-
Neptunian region. Specifically, cold CKBOs have distinctly
red colors (Tegler & Romanishin 2000) that may have resulted
from space weathering of surface ices, such as methanol (e.g.,
Schaller 2010), that are stable beyond 30 AU. A large fraction
of 100 km class cold CKBOs are binaries with wide separations
and similar size components (Noll et al. 2008a, 2008b). These
binaries are practically absent in the dynamically hot, resonant,
and scattered populations. The albedos of cold CKBOs are
generally higher than those of the dynamically hot CKBOs
(Brucker et al. 2009). Finally, the magnitude distribution of cold
CKBOs is markedly different from those of the hot and scattered
populations, in that it shows a steep slope for the large objects:
Σ(mR)dmR ∼ 10αmR with α ∼ 0.82, where Σ(mR) is the number
of objects per square degree with R magnitude mR (Fraser et al.
2010).

The magnitude distribution of CKBOs shows a rollover to a
shallower slope at magnitudes m∗

R ∼ 25 (Bernstein et al. 2004,
see Petit et al. 2008 for a review). This feature is thought to
occur due to a genuine change in the slope of the size frequency
distribution (SFD), because extreme albedo variations would
need to be invoked if the SFD slope were constant over m∗

R .
Using albedo pV = 0.2 for the cold CKBOs (Brucker et al.
2009) and m∗

R = 25 (Fuentes et al. 2009), the rollover radius
is R∗ = 37 km. Allowing for uncertainties in pV and m∗

R , it is
probably safe to assume that 25 km � R∗ � 50 km.

For mR < m∗
R , α ∼ 0.82 from Fraser et al. (2010) implies

N (R)dR ∼ R−qdR with q = q> ∼ 5 for R > R∗ (q = 5α + 1).
For mR > m∗

R , α ∼ 0.2–0.3 from Fuentes & Holman (2008) and
Fuentes et al. (2009) implies that q = q< ∼ 2–3 for R < R∗.
These SFD slope estimates will be used to constrain our model
(Section 3). Note that the shallow SFD slope for mR > m∗

R

is an empirical approximation that fits observations only up
to the limiting magnitude mR ∼ 27 (Fuentes et al. 2009) or
equivalently down to R ∼ 15–20 km, depending on albedo. The
actual SFD can be wavy, just like the SFD of the asteroid belt
at these radii (e.g., Bottke et al. 2005). Indeed, the occultation
data from Schlichting et al. (2009) may indicate that the number
of R > 250 m KBOs is significantly larger than what would be
expected from extrapolating the SFD with q � 3 from R∗ down
to R = 250 m.

The SFD rollover at R∗ may be telling us something important
about the formation and evolution of cold CKB. As first
suggested by Pan & Sari (2005, hereafter PS05), the shallow
SFD slope for R < R∗ can be the result of extensive collisional
grinding in the cold CKB. Indeed, the SFD slope index below
R∗, q< ∼ 2–3, is similar to the slope index expected for a
collisionally evolved population that reaches the equilibrium
slope (Dohnanyi 1969; O’Brien & Greenberg 2003).4

PS05 carried out order-of-magnitude analytic calculations to
support their argument. They used an idealized two-slope SFD
with q< ≈ 3 and q> = 5 and estimated R∗ by postulating
that bodies of radii R � R∗ are disrupted over 4.5 Gyr. As
presented, their results were meant to apply to the case in which
the number of bodies with R > R∗ has not changed over 4.5 Gyr
and was equal to the number of bodies in the present KB (but

4 Dohnanyi’s equilibrium slope q = 3.5 (Dohnanyi 1969) applies to a
situation in which the object’s strength is independent of its size. In the gravity
regime of impacts, applicable to the size range relevant here, the strength
increases with size and q ∼ 3 (O’Brien & Greenberg 2003).
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see below). They found that R∗ = 20–50 km, in agreement with
observations, with the exact value of R∗ mainly depending on
the assumed disruption law.

We were unable to reproduce these analytical results with
the numerical code described in Section 2. Specifically, using
PS05’s assumptions, we always obtained the break well below
10 km (see Section 3.1). Since our code was thoroughly tested
and gives results that are essentially identical to those of other
numerical codes (Weidenschilling et al. 1997; Stern & Colwell
1997; Kenyon & Bromley 2001; Bottke et al. 2005; Fraser 2009),
one might wonder why it fails so badly in reproducing the PS05
results. While some unspecified numerical problems, common
to all tested codes, can be responsible, there are also a few issues
with the PS05 calculations that need to be clarified.

PS05 claim that they normalize the population at R∗ to be
equivalent to KB with 4 × 104 bodies larger than 100 km.
A thorough reading of the description of their normalization
procedure reveals, however, that they mean R > 100 km rather
than diameter D > 100 km. Using this normalization, they
therefore have 4 × 104 bodies with R > 100 km, which implies
∼6.4×105 bodies with R > 50 km, if R∗ < 50 km and q> = 5.
For comparison, observations indicate that there should only be
30,000–50,000 KBOs with R > 50 km (Jewitt & Luu 1995;
Trujillo et al. 2001; Fuentes & Holman 2008). PS05 therefore
effectively assume a population of R > R∗ bodies that is a
factor of ∼16 larger than the one existing in the KB today.
Since, according to PS05’s Equation (8), R∗ scales with f 1/3,
where f = 16 is the augmentation factor, we find that R∗ should
be about a factor of 2.5 lower than what was claimed in PS05,
or R∗ = 8–20 km, if f = 1.

The second issue is related to the PS05 disruption laws.
To obtain large values of R∗, they adopted extremely weak
disruption laws (β = 1.5 in the notation of their Equation (5)),
where the specific impact energy needed to catastrophically
disrupt and disperse an object of size R, Q∗

D(R), was up to ∼103

times lower than the one estimated for water ice by Benz &
Asphaug (1999; Figure 1). Such extremely weak disruption laws
are probably unrealistic. More realistic disruption laws, such as
those advocated by Stewart & Leinhardt (2009) and Leinhardt
& Stewart (2009), are similar to the strongest disruption law
considered by PS05 (β = 3 in their Equation (5)). With these
laws, R∗ < 10 km according to PS05 (for f = 1), which is more
in line with the results of our numerical code. We therefore find
that either the number of large objects was much larger than the
one in the present KB, implying faster initial grinding, or the
observed rollover at R∗ = 25–50 km must be due to something
else.

The SFD rollover can be a signature of the accretional
processes that were active during the KBO formation (see
Kenyon et al. 2008 and Chiang & Youdin 2010 for reviews).
Interestingly, the asteroid belt, thought to have formed by similar
processes, also shows a rollover at R ≈ 50 km. Given better
constraints that we have on the fragmentation processes in
the asteroid belt (e.g., survival of the Vesta’s crust, number
of asteroid families, etc.), it has been established that the
rollover was not produced by collisional grinding (Bottke et al.
2005). Instead, the asteroid SFD rollover was likely created by
accretional processes and constrains them in important ways
(Morbidelli et al. 2009). The distinction between fragmentation
and accretion signatures is more difficult to make in the Kuiper
Belt (KB), where we are lacking good constraints.

The binary KBOs can provide an interesting constraint
on the amount of collisional grinding in the KB. Recent

Figure 1. Contrasting assumptions on the strength of KBOs. The plot shows
the specific energy of catastrophic disruption, Q∗

D, as a function of radius
of the impacted body. The upper solid curve shows Q∗

D as determined from
hydrodynamic simulations of impacts on water ice (Benz & Asphaug 1999).
The dashed curve shows Benz & Asphaug’s ice Q∗

D divided by 10, which is the
weakest disruption law considered in our work, and also roughly the smallest
Q∗

D value in the gravity regime found in numerical simulations of impacts into
porous rubble piles (Leinhardt & Stewart 2009; Stewart & Leinhardt 2009). The
two solid straight lines show Q∗

D that we computed from the strong (β = 3) and
weak (β = 3/2) disruption laws of PS05.

observations indicate that ∼30% of 100 km class cold CKBOs
are binaries (Noll et al. 2008a, 2008b; >0.06 arcsec separation,
<2 mag magnitude contrast). The properties of known binary
KBOs differ markedly from those of the main-belt and near-
Earth asteroid binaries (Merline et al. 2002; Noll et al. 2008a).
The 100 km class binary KBOs identified so far are widely sep-
arated and their components are similar in size. These properties
defy standard ideas about processes of binary formation involv-
ing collisional and rotational disruption, debris re-accretion, and
tidal evolution of satellite orbits (Stevenson et al. 1986). They
suggest that most binary KBOs are remnants from the earliest
days of the solar system. Indeed, all models developed so far
postulate that binary formation was contemporary to the for-
mation of KBOs themselves (Weidenschilling 2002; Goldreich
et al. 2002; Funato et al. 2004; Astakhov et al. 2005; Nesvorný
et al. 2010).

The survival of binary KBOs after their formation is an
open problem. Petit & Mousis (2004) estimated that several
known binary KBOs, such as 1998 WW31, 2001 QW322, and
2000 CF105, have lifetimes against collisional unbinding that are
much shorter than the age of the solar system. These estimates
were based on the steep SFD adopted by Petit & Mousis that
was extended down to R = 5 km. This assumption favors binary
disruption, because of the large number of available impactors.
When we update Petit & Mousis’ work with the more recent
estimates of the SFD in the KB (e.g., R∗ = 25–50 km for cold
CKBOs; see discussion above), we find that a typical 100 km
class wide binary CKBO is unlikely to be disrupted over the age
of the solar system (�1% probability), except if the KB (or its
source population) was more massive/erosive in the past.

Here, we use the observed binary fraction in the cold CKB
to determine how it limits the amount of collisional grinding
in the KB. We make different assumptions on the initial state
and history of the cold CKB and the related populations, and
identify cases that lead to the SFD break of cold CKBOs at
R∗ = 25–50 km. We then evaluate the survival of binary CKBOs
in each of these scenarios. If the rollover at R∗ = 25–50 km
was produced by collisional grinding, we find that the binary
fraction should show a strong gradient with radius and binary

2



The Astronomical Journal, 141:159 (11pp), 2011 May Nesvorný et al.

separation, because it is generally easier to dissolve binaries with
small components or those with very wide orbits (Section 3).
The absence of such a gradient would indicate that the rollover
is accretional.

2. MODELING COLLISIONAL EVOLUTION
AND BINARY SURVIVAL

2.1. Collisional Evolution Code

Our collisional modeling simulations employ Boulder, a new
code capable of simulating the collisional fragmentation of
multiple planetesimal populations using a statistical particle-
in-the-box approach. It was constructed along the lines of
other published codes (Weidenschilling et al. 1997; Kenyon
& Bromley 2001). A full description of the Boulder code, how
it was tested, and its application to both accretion and collisional
evolution of the early asteroid belt, can be found in Morbidelli
et al. (2009). Examples of its previous use for the asteroid
belt, Hildas, Trojans, irregular satellites, and primordial trans-
planetary disk are described in Levison et al. (2009) and Bottke
et al. (2010).

The code’s procedure for modeling impacts is as follows.
For a given impact between a projectile and a target object,
the code computes the specific impact energy Q, defined as
the kinetic energy of the projectile divided by the target mass,
and the critical impact energy Q∗

D , defined as the energy per
unit target mass needed to disrupt and disperse 50% of the
target (e.g., Davis et al. 2002). For reference, Q < Q∗

D values
correspond to cratering events, Q ≈ Q∗

D correspond to barely
catastrophic disruption events, and Q > Q∗

D correspond to
super-catastrophic disruption events.

For each collision identified by the code, the mass of the
largest remnant is computed from the scaling laws found in
hydrodynamic simulations of impacts (Benz & Asphaug 1999;
Leinhardt & Stewart 2009; Stewart & Leinhardt 2009). The
mass of the largest fragment and the slope of the power-law
SFD produced by each collision is set as a function of Q/Q∗

D

by empirical fits to the hydrocode results of Durda et al. (2004,
2007) and Nesvorný et al. (2006). See Bottke et al. (2010) for the
explicit definition of these fits. These results apply to monolithic
target bodies. We also tested approximate scaling laws for
impacts on pre-fragmented and rubble-pile targets. Again, these
scaling relations were drawn from the fits to hydrocode impact
simulations (Benavidez et al. 2011).

The Q∗
D function was assumed to split the difference between

the impact experiments of Benz & Asphaug (1999), who used a
strong formulation for ice, and those of Leinhardt & Stewart
(2009), who used the finite volume shock physics code to
perform simulations into what they describe as weak ice. To
do this, we divide the Benz & Asphaug (1999) strong-ice Q∗

D

function by a factor, fQ. We typically used fQ = 3, 5, and 10.
Note that because we sampled a broad section of parameter
space, we chose not to include still more complicating factors
(e.g., Q∗

D may vary with impact velocity, etc.). The bulk density
was set to ρ = 1 g cm−3.

The main input parameters for the Boulder code are the (1)
initial SFD of the simulated populations (see Section 3); (2)
intrinsic collision probability, Pi, defined as the probability that
a single member of the impacting population will hit a unit
area of a body in the target population over a unit of time; and
(3) mean impact speed, vi . For collisions between present-day
CKBOs, we used Pi = 4 × 10−22 km−2 yr−1 and vi = 1 km s−1

(Davis & Farinella 1997; Dell’Oro et al. 2001).5 See Section 3
for our specific choices of Pi and vi for other populations.

2.2. Binary Survival Code

Petit & Mousis (2004) identified three main processes that can
dissolve KBO binaries: (1) one of the components is hit by a
small impactor. While the component survives essentially intact,
except for a new crater on its surface, the linear momentum
transferred from the impactor imparts a “kick” on the velocity
vector of the binary orbit. If the kick is large enough, the
component becomes unbound from its companion. (2) One
of the components can be shattered by a large impactor.
The fragments produced the object’s breakup are expected to
escape on unbound trajectories because the ejection speeds
(∼100 m s−1) largely exceed that of the binary orbit (∼1 m s−1).
(3) The binary system has a close gravitational encounter with
another KBO. The tidal gravity of that object can unbind the
binary provided that the object is massive enough (e.g., Stern
et al. 2003).

Petit & Mousis (2004) found that mechanism (1) is by far the
most efficient way to dissolve binaries in the present KB. Thus,
we focus on modeling (1) in this work. Mechanism (2) is also
considered, but we find that its effects are negligible compared
to (1), except if extremely weak (and probably unrealistic)
disruption laws are adopted. This result stems from the fact that
it is generally easier to dissolve a wide KBO binary orbit by an
impact than to physically disrupt a 100 km object. Mechanism
(3) could have been important during the early phases of the
KB evolution provided that the cold CKB overlapped with
a population of numerous, very massive KBOs. We do not
model (3) in this work because we do not yet have an adequate
understanding of these early stages.

We will assume in the following that small impacts with
Q � Q∗

D can be treated as inelastic collisions. Thus, we will
ignore any linear momentum that can be potentially carried
away by ejected fragments. In this approximation and assuming
that mi � m, where mi and m are the impactor and binary
component masses, the velocity vector of the binary orbit, v,
will change by

δv � mi

m
vi . (1)

See Dell’Oro & Cellino (2007) for a discussion of the linear
momentum transfer for different impact angles and in the case
where the escaping ejecta affect the linear momentum budget.

The binary components are assumed to have equal mass,
which should be a good approximation for the real binaries in
the cold CKB (see Section 1). This assumption is conservative
in the sense that it is generally harder to disrupt a binary with
equal-size components than the one in which the secondary is
smaller than the primary (if other parameters are the same). By
using equal-size binaries we may thus slightly underestimate
the real decay rate.

The radial, tangential, and normal components of δv will be
denoted by δvR , δvT , and δvZ , respectively, in the following.
With this notation, the semimajor axis a, eccentricity e, and

5 Note that, according to PS05, Pi can be approximated by ∼ Ω/A, where Ω
is the typical orbital angular velocity in the Kuiper Belt, and A is the Kuiper
Belt’s area in the plane of the solar system. With Ω = 0.022 yr−1 and
A = 1200 AU2, PS05 thus effectively have Pi = 10−21 km−2 yr−1, a value
larger by a factor of 2.5 than the one adopted in this work.
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inclination I of the binary orbit will change by

δa = 2

nη
[δvT (1 + e cos f ) + δvR e sin f ] , (2)

δe = η

na

[
δvR sin f + δvT

(
cos f +

e + cos f

1 + e cos f

)]
, (3)

δ(cos I ) = η

na
δvZ

sin(ω + f )

1 + e cos f
, (4)

where ω is the argument of pericenter, f is the true anomaly at
the time of impact, and η = √

1 − e2 (e.g., Bertotti et al. 2003).
Our statistical code does not deal with the detailed geometry

of each individual impact. Instead, it follows the mean quadratic
changes of orbital elements produced by the average effect of
impacts with different orientations relative to the binary orbit
and times corresponding to different orbital phases. Specifically,
we assume that the impact direction is isotropic and impacts are
not correlated with the binary orbit phase, which should be the
case for the well-mixed system that we deal with. The algorithm
is as follows.

Assuming that vi = vi n, where vi is the characteristic impact
speed and n is the unit vector with isotropic orientation, we have

〈(δvR)2〉 = 〈(δvT )2〉 = 〈(δvZ)2〉 = 1

3

m′2

m2
v2

i (5)

and
〈δvR δvT 〉 = 〈δvR δvZ〉 = 〈δvT δvZ〉 = 0, (6)

where the average was taken over n’s orientations. Speed vi

can be determined as the rms value of impact speeds with the
distribution that is characteristic to the studied population (e.g.,
Davis & Farinella 1997).

In the next step, we average over the phase of the binary orbit
at which the impact occurs. We obtain

〈(δa)2〉
a2

= 4

3

(mivi

mv

)2
, (7)

〈(δe)2〉 = 5

6
η2

(mivi

mv

)2
, (8)

and

〈(δ cos I )2〉 = 2 + 3e2

12η2

(mivi

mv

)2
. (9)

Since the orbital speed of a KBO binary, v = na, where n is
mean motion, is typically ∼1 m s−1, while vi ∼ 1 km s−1, the
binary orbit can be dissolved by a single impact generating δa/a,
δe, or δ(cos I ) of the order of unity, if mi/m � v/vi ∼ 10−3.

In addition, the cumulative effect of impactors with mi <
10−3m can also be important as it leads to a random walk in
orbital elements. It can be shown that

〈δa δe〉 = 〈δa δ (cos I )〉 = 〈δe δ (cos I )〉 = 0. (10)

Thus, the changes in different orbital elements due to small
impacts are uncorrelated and can be treated separately.

The binary system is assumed to become dissolved either if
e > 1 or if the semimajor axis exceeds some critical value,
acrit. We set acrit = 0.5RHill as a rough limit dictated by the
Hill stability criterion (e.g., Donnison 2010) and numerical
integrations (e.g., Nesvorný et al. 2003). By experimenting with

the code we find that the main channel of binary disruption
is reaching a > acrit in one or a small number of collisions.
Accordingly, the results are insensitive to the initial distribution
of e.

Note that the inclination changes cannot result in binary
splitting directly, but, if coupled to effects arising from the
Kozai dynamics (Kozai 1962), they can also be important. We do
not consider the coupling of collisional effects with dynamics
of inclined binary orbits in this work. Therefore, the initial
direction of the binary angular momentum vector does not need
to be specified.

2.3. Boulder with Binary Module

The binary module was inserted in the Boulder code. This
was done by attaching additional data structures to each size
bin. These data structures describe the initial distributions of
a, e, and i of binary orbits and track how these distributions
change over time. As the population of impactors evolves with
time due to collisional fragmentation, the code calculates the
time-dependent rate of change of binary orbits and evolves them
according to Equations (7)–(9).

3. RESULTS

3.1. PS05 Case

To start with, we illustrate the case studied by PS05. In this
case, the KB is assumed to evolve in isolation over τ = 4.5 Gyr.
The initial population is given a two-slope SFD with q< = 3,
q> = 5, and R∗ between 1 km and 50 km. The total number of
objects with R > 50 km is normalized to N0 = 50,000, which
is roughly the estimated number of objects in the present KB.
We also consider cases with N = fNN0, where fN is the scaling
parameter. For example, assuming that pV = 0.2, ρ = 1 g
cm−3, q< = 3, q> = 5, and R∗ = 37 km, fN ∼ 0.4 gives the
total mass ≈0.01ME, where ME is the Earth mass, which is what
the observations seem to indicate for the cold CKB (Fuentes &
Holman 2008), although this value is still quite uncertain. On
the other hand, fN = 13 corresponds to the population used in
PS05 (see discussion in Section 1).

Figure 2 shows the result of collisional grinding for fN = 1
and two different values of fQ: fQ = 3, roughly corresponding
to the PC05’s strong disruption law, and fQ = 500, roughly
corresponding to the PC05’s weak disruption law (see Figure 1).
We used Pi = 4 × 10−22 km−2 yr−1 and vi = 1 km s−1. The
initial distribution was set so that q< = 3 for R < 1 km and
q> = 5 for R > 1 km. For ρ = 1 g cm−3 this gives the total
initial mass of 0.84 ME. After having evolved the population with
the Boulder code over τ = 4.5 Gyr, the remaining masses were
0.056 ME for fQ = 3 (Figure 2(a)) and 0.027 ME for fQ = 500
(Figure 2(b)).

For fQ = 3, the SFD slope just below ∼50 km becomes
slightly shallower over time, mainly due to the effects of large
cratering impacts and reaches q ∼ 4 at τ = 4.5 Gyr. This
final slope is significantly steeper than the present slope of cold
CKBOs at these radii. With fQ = 500, a sharp rollover to a very
shallow slope develops at R ∼ 10 km, because most objects
with R < 10 km suffer catastrophic disruptions. Thus, even with
the unrealistically weak disruption law, the SFD break is still
significantly below the actual rollover radius in the present cold
CKB. This result is insensitive to the specific choice of model
parameters related to the generation of fragments, resolution,
and plausible changes of Pi and/or vi .
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Figure 2. Kuiper Belt SFD changes for: (a) fQ = 3 and (b) fQ = 500. These
two fragmentation laws roughly correspond to the strong and weak disruption
laws considered by PS05 (β = 3 and β = 3/2, respectively, in their notation).
The upper thin black lines in both panels show the initial SFD (fN = 1). The
bottom bold black lines are the SFD produced by collisional grinding over
τ = 4.5 Gyr. The bold gray lines denote constraints on the present SFD of
the cold CKB: q> = 5 for R > 37 km according to Fraser et al. (2010) and
q< = 2–3 for R < 37 km according to Fuentes & Holman (2008) and Fuentes
et al. (2009). Since we plot the cumulative distributions N (> R) here, the plotted
slopes have indices equal to 4 for R > 37 km and 1–2 for R < 37 km.

We therefore find that the observed break at R∗ = 25–50 km
cannot be produced by collisional grinding, except if the number
of objects with R > R∗ was much larger in the past and
was depleted by dynamical processes, or if the cold CKBO
overlapped with a much larger population of impactors in the
past. We consider these possibilities in the following text.

3.2. Adopted Model

Levison et al. (2008a) proposed that most of the complex
orbital structure seen in the KB region today (see, e.g., Gladman
et al. 2008) can be explained if bodies native to 15–35 AU were
scattered to >35 AU by eccentric Neptune (Tsiganis et al. 2005).
If these outer solar system events coincided in time with the Late
Heavy Bombardment (LHB) in the inner solar system (Gomes
et al. 2005), binaries populating the original planetesimal disk
at 15–35 AU would have to withstand ∼600 Myr before being
scattered into the KB. Even though their survival during this
epoch is difficult to evaluate, due to major uncertainties in
the disk’s mass, SFD, and radial profile, the near-absence of
wide and equal-sized binaries among 100 km sized hot classical
KBOs (Noll et al. 2008a, 2008b) seems to indicate that the
unbinding collisions and scattering events must have been rather
damaging.

The contrasting characteristics of cold CKBOs discussed
in Section 1 may indicate that the cold CKBOs formed in

a relatively quiescent environment at >40 AU rather than
having been scattered to their current orbits from <35 AU,
because more resemblance between different trans-Neptunian
populations would be expected in the latter model. The in situ
formation of cold CKBOs is also supported by the results of
Parker & Kavelaars (2010) who showed that some of the widest
binaries observed in the cold CKB today would probably not
survive scattering encounters with Neptune.

To understand the collisional history of the cold CKB, we
consider both the pre-LHB and post-LHB epochs. For the
pre-LHB epoch, we assume that the cold CKBOs evolved in
relative isolation at 40–50 AU, where most collisions occurred
between cold CKBOs themselves. The results of these pre-LHB
simulations should also apply, with minor modifications, if the
cold CKBOs formed closer in, as far as the source population of
cold CKBOs can be considered as a closed collisional system.
The coupling of CKBOs to the scattered trans-planetary disk
during the LHB is not considered here because Benavidez &
Campo Bagatin (2009) showed that collisional fragmentation
during this stage was unlikely to produce substantial changes in
the SFD.

3.3. Post-LHB Epoch

We start by discussing the collisional evolution of the KB
after LHB. We consider collisions between two CKBOs, one
CKBO and one scattered disk object, and two scattered disk
objects. The scattered disk is massive initially and becomes
dynamically depleted over time, with an estimated depletion
factor of 100–250 over 4 Gyr (Levison & Duncan 1997; Dones
et al. 2004; Tsiganis et al. 2005). This dynamical depletion
is taken into account in Boulder by gradually decreasing the
number of scattered disk objects in all size bins.

The collisional probabilities, impact speeds, initial SFDs,
and dynamical decay rates were taken from Levison et al.
(2008b). Specifically, we used Pi = 4 × 10−22 km−2 yr−1 and
vi = 1 km s−1 for CKB collisions, Pi = 2 × 10−22 km−2 yr−1

and vi = 1.5 km s−1 for CKB–scattered-disk collisions,
and Pi = 10−22 km−2 yr−1 and vi = 3 km s−1 for colli-
sions between scattered disk objects (see also Brown et al.
2007). We varied these (and other) parameters in test sim-
ulations to determine the sensitivity of results to different
assumptions.

The SFD of the scattered disk was normalized as in Levison
et al. (2008b). We assumed that there are presently 50,000
scattered disk objects with R > 50 km and that this population
decayed by a factor of 250 times since LHB (Tsiganis et al.
2005). We fixed fN = 1, because the dynamical depletion
of CKBOs should be relatively minor during this stage. For
R∗ = 37 km, this gives the initial mass ∼0.2 ME. Also, to
promote collisional grinding, we used the weak disruption law
with fQ = 10.

Figure 3 shows the SFD of CKBOs and scattered disk objects
that were obtained for two different assumptions on the initial
SFD of cold CKB. In Figure 3(a), we assumed that the initial
SFD was steep down to R = 1 km. In Figure 3(b), we used the
present SFD shape of cold CKB with R∗ = 37 km.

In Figure 3(a), the rollover in the final SFD of CKBOs occurs
at R ≈ 5 km, which is significantly below the observed R∗
value. We experimented with a range of fN , fQ, vi , and Pi values
and various initial SFDs. These tests showed that the results
illustrated in Figure 3(a) are representative. Specifically, if we
start with the initial break at R < 10 km, the final break ends up
being at R < 10 km as well. These results therefore suggest that
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Figure 3. SFDs of CKBOs (solid lines) and scattered disk objects (dashed lines)
in our Boulder simulations of the post-LHB epoch for: (a) the initial SFD of
CKBOs is steep for R > 1 km (q = 5) and shallow for R < 1 km (q = 3),
and (b) initial SFD of CKBOs with a break at R∗ = 37 km. In both cases,
we assumed that the initially massive scattered disk dynamically decayed as in
Tsiganis et al. (2005). The thin lines show the initial distributions. The bold
lines are the final SFDs evolved over τ = 4 Gyr. We used fQ = 10 and fN = 1.

the observed SFD rollover of cold CKBOs at R∗ = 25–50 km
cannot be produced by the collisional grinding after LHB.

On the other hand, if we start with the break at R∗ = 37 km
(Figure 3(b)), the SFD of CKBOs remains nearly unchanged for
R � 10 km. The total mass loss due to the collisional grinding
of small objects is only ∼15% in the CKB and ∼5% in the
scattered disk. These results show that, while the SFD may have
been shaped by collisional grinding in epochs prior to the LHB,
it remained essentially constant since then. The binary fraction
does not provide any interesting constraints on the collisional
evolution of CKBOs after LHB because the vast majority of
binaries with R � 10 km survive.

3.4. Pre-LHB Epoch

Fraser (2009) and Benavidez & Campo Bagatin (2009)
suggested that the observed SFD rollover in the cold CKB was
produced by collisional grinding during the ∼600 Myr before
the LHB. The collisional modeling of the pre-LHB phase is
complicated by the fact that the state of the KB before LHB is
poorly understood. What we seem to infer from observations
(see discussion in Sections 1 and 3.2) is that the cold CKB
probably formed in situ at 40–50 AU. The LHB modeling
would then indicate that various dynamical processes probably
removed ∼90% of its mass during LHB (Morbidelli et al. 2008).
Using these results as a guideline, we find that there is indeed a
potential for the observed SFD rollover being a fossil remnant
of the collisional grinding of massive population before LHB.

The impact speeds in the pre-LHB CKB depend on the
dynamical state of the disk. In its present state, the impact speeds
are relatively high (∼1 km s−1) because orbits have relatively
high eccentricities (e ∼ 0–0.2) and inclinations (i ∼ 0◦–30◦).
On the other hand, KBOs can only have formed if e and i
were much lower (e.g., Kenyon et al. 2008, and the references
therein). This implies that some dynamical processes must have
excited e and i to their present values. Two main possibilities
exist. Either (1) the cold CKB was dynamically excited by some
primordial process that dates back to KBO formation or (2) the
excitation was produced by the LHB itself (see Morbidelli et al.
2008 for a discussion). Following Fraser (2009) we first study
(1), in which case vi ∼ 1 km s−1. Low vi values implied by (2)
will be discussed in Section 3.7.

Fraser (2009) considered the initial SFDs that were steep
(q1 = 5) down to Ra, then became nearly flat (q2 = 0–2) down
to Rb, with the collisional equilibrium below Rb (q3 = 3.5).
These initial SFDs were motivated by the results of published
simulations of the coagulation growth in KB, which tend to
produce such distributions (Kenyon et al. 2008). Since it is not
clear, however, whether KBOs formed by two-body coagulation
in the first place (see Chiang & Youdin 2010 for a review), it
is not guaranteed that these initial conditions actually apply.
Nevertheless, we use Fraser’s initial SFDs as a starting point
and consider other options in Section 3.6.

Figure 4 illustrates the Fraser’s case with Ra = 2 km,
Rb = 0.5 km, q1 = 5, q2 = 1, and q3 = 3.5. As in Fraser
(2009), we used vi = 1 km s−1, fQ = 3 (corresponding to
Fraser’s weak disruption law) and evolved the populations with
Boulder over τ = 600 Myr. Factor fN was varied to obtain
different initial masses and thus different collisional histories.
Each of these cases would imply a different dynamical depletion
factor during LHB.

The best results were obtained with fN ∼20–50, implying the
initial mass between 7 and 15 ME (Figure 4(a)). With fN < 20
(<7 ME) and fN > 50 (>15 ME), the SFD rollover occurred
at radii that were either too small or too large, respectively,
compared to observations. These values are only soft limits,
however, because the rollover radius is also sensitive to the
assumed Ra value. For example, smaller initial mass values
would still be plausible if Ra = 3–10 km. In addition, slightly
larger rollover radii can be produced with fQ = 10. We
therefore find, in agreement with Fraser (2009), that a reasonably
conservative lower limit on the initial disk’s mass is ∼1 ME.

The model SFDs discussed here share a common trait. While
they bend to a shallow slope at R∗, the slope below R∗ is never
shallower than q ≈ 3 and, even in the best cases such as the
one shown in Figure 4(a), just barely matches the observational
constraint. Moreover, the shallow SFD segment below R∗
generally only extends down to R = 10–20 km and steepens
back to q ≈ 5 for R � 10 km (Figure 4(a)). This does not
contradict the existing observations because very little is known
about KBOs with R � 10 km. We were unable to obtain a case
where the final SFD would be uniformly shallow below R∗ down
to R < 10 km, except for very large and probably implausible
initial masses. This is therefore clearly not the idealized case
considered in PS05, where it was assumed that the slope
below R∗ can be approximated by q ≈ 3 to some very small
(indefinite) R.

Our simulations show that the disk mass is reduced by a
factor of ∼10 by collisional grinding. Thus, starting with ∼1 ME,
the remnant mass just before LHB would be ∼0.1 ME. This is
plausible because the LHB modeling in Morbidelli et al. (2008)
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Figure 4. (a) SFD evolution and (b) binary survival before LHB for the initial
SFD shape used by Fraser (2009): Ra = 2 km, Rb = 0.5 km, q1 = 5, q2 = 1,
and q3 = 3.5. We used fQ = 3 corresponding to the Fraser’s weak disruption
law. The thin black line in (a) shows the initial SFD. The middle bold black
line in (a) shows the final state after τ = 600 Myr of collisional grinding. The
bottom bold black line in (a) shows the SFD after a dynamical depletion factor
fN = 30 was applied to the final distribution (change indicated by an arrow).
The bold gray lines in (a) denote observational constraints on the present SFD
in cold CKB. The bold gray line in (b) marks the binary fraction of 0.3. We
assumed that the initial binary fraction was 1. The bold black line in (b) shows
the expected binary fraction in this model. The binary separation was set to
0.01 RH.

showed that the population at 40–50 AU becomes dynamically
depleted by a factor of ∼10. The expected final mass of
cold CKBOs from these order-of-magnitude considerations
is therefore ∼0.01 ME, which is in the right ballpark when
compared to observations (e.g., Fuentes & Holman 2008;
Brucker et al. 2009).

The initial masses smaller than ∼1 ME would imply Ra >
10 km and indicate that the observed break at R∗ ∼ 37 km was
essentially in place before fragmentation processes had begun.
The initial masses larger than ∼10 ME are probably implausible,
because these large masses would imply �1 ME mass before
LHB and would require a dynamical depletion factor at LHB
in excess of ∼100. Such a large depletion factor is difficult to
explain by LHB processes if the cold CKBOs formed in situ at
40–50 AU (Morbidelli et al. 2008).

3.5. Binary Survival

We now consider the binary survival. Figure 4(b) shows the
fraction of binaries surviving the pre-LHB epoch for fN = 30
and Fraser’s initial SFD shape. There is a clear trend with the
physical size of binary components. Specifically, more than 50%
of binaries with radii R > 50 km survive, while the survival
rate for R = 10–20 km is only ∼0.5%. This trend is easy
to understand because, according to Equations (7)–(9), smaller
binary mass m implies larger orbital change.

Figure 5. (a) Physical parameters of known binaries in the cold CKB (Noll
et al. 2008a). Separations were computed from the apparent angular separation
of the two components at discovery. Radius of the primary was estimated with
pV = 0.2. The horizontal dashed lines in (a) denote the separation values
considered in our model. (b) The same as Figure 4(b), but for three different
initial separations of binary components. As expected, the wide binaries have
lower survival rates than the tight ones.

The trend is reversed for R < 10 km because of the lack of
small impactors with R ∼ 0.5 km that could unbind binaries
with R ∼ 5 km (see Figure 4(a)). The behavior of the surviving
binary fraction for R < 10 km is sensitive to the initial SFD.
For example, if Ra = Rb = 2 km, in which case the Dohnanyi’s
slope is directly attached to the steep SFD slope at large sizes,
the survival rate of R < 10 km binaries more monotonically
drops with decreasing R (see Section 3.6). We will concentrate
on binaries with R > 10 km in the following discussion,
because that is where things can be constrained by the existing
observational data.

Figure 5(a) shows the physical parameters of known binaries
in the cold CKB (Noll et al. 2008a; Grundy et al. 2009). The
radii of primary components range from ∼30 to ∼100 km. The
separations are between ∼2 × 10−3 and ∼0.2 Hill radii. From
Equation (1), the survival rate should decrease with separation
because δv/v ∝ vi

√
a, which is larger for larger a. Given

the spread of separations in Figure 5(a), we therefore consider
cases with a = 0.001, 0.01, and 0.1 RH. These initial values
should cover the interesting range of separations. Considering
these cases separately, rather than using some continuous initial
distribution of a, is the right thing to do, because the real
distribution of a produced by the formation process is not well
understood.

Figure 5(b) shows the surviving binary fraction for these semi-
major axis values. As expected, the wider binaries have lower
survival rates than the tighter ones. For example, R = 30 km
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Figure 6. Same as Figure 4, but for the initial SFD that lacks objects with
R < 2 km. We set fN = 14 corresponding to the initial mass of ≈4 ME. The
initial population grinds down to ≈0.6 ME in τ = 600 Myr before LHB.

binaries with a = 0.1 RH would be reduced by a factor of
∼100 in the Fraser’s pre-LHB collisional model illustrated in
Figure 4(a), while R = 30 km binaries with a = 0.01 RH
would be reduced by a factor of ∼10. These considerations
provide an interesting test on the level of collisional grinding
in the cold CKB, because the binary fraction could have been
strongly reduced by collisions, especially for R � 50 km. To
pass this test, any plausible collisional scenario needs to match
not only the SFD of cold CKBOs, including the rollover at
R∗ = 25–50 km, but also explain how the large fraction of cold
CKBOs binaries survived, as indicated by observations (see
Section 4).

3.6. Sensitivity to Initial SFD

Before we compare our results to observational data, we test
the sensitivity of the binary survival to different assumptions.
Figures 6 and 7 illustrate the dependence on the initial SFD.
In Figure 6, we choose to extend the steep slope (q = 5) from
large sizes down to R = 2 km and assume that there are no
bodies initially with R < 2 km (case A). In Figure 7, we impose
a break from q = 5 to q = 3 at R = 2 km (case B). In each
case, fN , or equivalently the total initial mass, is set so that the
collisional grinding leads to the SFD rollover at R = 25–50 km.
The population is evolved over τ = 600 Myr.

The best results were obtained with fN = 14 (4 ME initial
mass) for case A and fN = 30 (26 ME) for case B. These
initial masses grind down to 0.6 and 1 ME, respectively. While
the final distribution obtained in case A matches constraints
reasonably well (Figure 6(a), but see discussion in Section 3.4),
the distribution for R < 30 km in case B is always steeper

Figure 7. Same as Figure 4, but for the initial SFD with a break from q = 5
to q = 3 at R = 2 km. We set fN = 30 corresponding to the initial mass of
≈26 ME. The initial population grinds down to ≈1 ME in τ = 600 Myr before
LHB.

than q = 3. Interestingly, it is difficult to produce a shallower
slope in case B unless we use the initial masses in excess of
100 ME, which is clearly implausible, or fQ � 10, which would
conflict with the published results of impact simulations (see
Section 3.1).

It thus appears that a rather abrupt change in the initial SFD
slope is needed to produce a shallow slope with q = 2–3
below R∗. This can be easily understood. The objects with R
near the initial slope change are long-lived, because they see
a small number of impactors, if the transition is sharp. Thus,
they can break larger bodies and create a sharp SFD rollover
at about 10 times their radius. We find that it is easier to fit
constraints if the initial break is placed at R ∼ 5 km, rather than
at R � 2 km, because R ∼ 5 km objects are long-lived in that
case and can disrupt KBOs near R∗ with our disruption laws
(fQ = 1–10).

Additional dependencies exist on the assumed SFDs of
fragments produced by the cratering and catastrophic impacts.
We find that catastrophic impacts tend to produce a sharp
transition from steep to shallow slope near the largest object
in the population that can be disrupted by them. The cratering
impacts, on the other hand, tend to smooth this transition and
produce more gentle waves in the SFD. This may explain some
of the subtle differences between our simulations, which tend to
produce gentle SFD waves, and those of Fraser (2009), which
show stronger variations of slope for R ∼ R∗ (e.g., q < 2 below
the break).

The fraction of binaries surviving in case A is within a factor
of ∼2 to that we obtained with the Fraser’s initial distribution.
Interestingly, the binary survival rate is slightly larger in case B,
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Figure 8. Same as Figure 6, but for vi = 300 m s−1. We set fN = 300
corresponding to the initial mass of ≈88 ME. The initial population grinds
down to ≈6.7 ME in τ = 600 Myr before LHB.

which has a larger mass than case A, and should thus lead to more
perturbations on binary orbits. The larger binary survival rate
in case B is related to the shorter lifetime of intermediate-size
impactors (R ∼ 5 km) in case B, which are disrupted by smaller
impactors from the Dohnanyi’s tail. These small impactors are
nearly absent in case A.

3.7. Sensitivity to Impact Speeds

So far we described tests with vi ∼ 1 km s−1. It is uncertain
whether these assumed impact speeds should apply to the pre-
LHB collisions, because the dynamical state of the KB region
at 40–50 AU could have been very different. Specifically, the
dynamical effects during LHB, such as, e.g., passing resonances,
could have excited the orbits of cold CKBOs. If so, the cold
CKBOs could have had smaller eccentricities and inclinations
than they have now, implying lower collision speeds before the
LHB. Here, we test cases with vi < 1 km s−1. The results need
to be considered with caution, because it is not clear whether
our disruption laws (Section 2.1) are applicable with low impact
speeds.

Figure 8 illustrates the case with vi = 300 m s−1. To create
the rollover at R∗ with this low collisional speed, we needed
to assume fN = 300, giving the initial mass of 88 ME for
the case A initial SFD. The population grinds down to 6.7 ME
at τ = 600 Myr, which would imply a dynamical depletion
factor of >200. Collision speeds vi < 300 m s−1 would require
even larger initial masses and dynamical depletion factors that
are clearly implausible. We therefore find that it is difficult
to produce the SFD rollover by collisional grinding with low
collisional speeds (vi � 300 m s−1).

Figure 9. Semimajor axis distribution of binary orbits for two different initial
distributions. (a) All binary orbits have a = 0.01 RH initially (dashed line). (b)
The number of binary orbits per interval da decreases as 1/a for a < 0.1 RH
(dashed line). We plot results for R = 20, 50, and 100 km for the Fraser’s case
illustrated in Figure 4.

The surviving binary fraction for vi = 300 m s−1 (Figure 8(b))
shows the usual trend with R in that the binaries with physically
smaller components survive at lower rate than the larger ones.
Below R = 10–20 km, the surviving binary fraction drops to
<10−3. The results for R > 20 km are similar to those obtained
with vi ∼ 1 km s−1 indicating that the survival of larger binaries
is not overly sensitive to the assumption on vi .

Additional tests show that it might be more plausible to create
the rollover at R∗ with low vi , if r1 ∼ 5 km (initial 20 ME grinds
to 5 ME) and/or for fQ = 10 (20 ME grinds to 2 ME). The
results for binary survival are similar in these two cases. While
r1 = 5 km generates a slightly stronger gradient with R and
minimum survivability for R < 20 km, fQ = 10 produces a
slightly softer gradient that is similar to that in Figure 6(b).

3.8. Changes of Binary Orbits

So far we discussed the binary survival in different collisional
scenarios. Here, we describe the distribution of binary orbits of
the surviving binaries. Figure 9(a) shows the semimajor axis
distribution of binary orbits produced in simulations with initial
a = 0.01 RH and R = 20, 50, and 100 km. Figure 9(b) shows the
same case for N (a)da ∝ da/a for a < 0.1 RH and N (a)da = 0
for a > 0.1 RH. These results were obtained for the Fraser’s
case (see Figure 4).

While the binaries with R � 100 km tend to retain the shape
of their original distribution, the binary orbits for R � 50 km
become significantly modified. For example, Figure 9(a) shows
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Figure 10. Binary fraction in the cold CKB as a function of (a) absolute primary
magnitude HV and (b) primary radius. Data for 122 KBOs with i < 10◦,
including 33 binaries, were taken from the observational surveys described in
Noll et al. (2008a, 2008b). The binary statistics for i < 5◦ is very similar to the
one shown here. Crudely debiased data (see the main text) were binned using
ΔHV = 0.4. For HV < 5.85, we combined all data into a single bin. The radii
of objects in (b) were computed with pV = 0.2. The error bars and upper limits
of non-detections show formal 1σ uncertainties.

that binaries with R = 50 km and a = 0.01 RH become tighter
or looser, producing a wide range of separations with a tail
extending to a = 0.1 RH. The number of very wide binaries
produced by collisions, however, is not expected to be large,
because the tail of the distribution at a ∼ 0.1 RH in Figure 9(a)
only represents a very small fraction.

Figure 9(b) shows how the initial gradient of binary fraction
with a can be modified by collisions. For example, the initial
gradient ∝ a−1 for R = 20 km binaries, becomes ∝ a−3.5. Thus,
if the collisional effects on these binary systems were important,
it could be difficult to try to infer their primordial semimajor
distribution from present observations. On the other hand, the
semimajor axis distribution of binaries with R � 100 km should
not have changed much since their formation.

4. COMPARISON WITH KNOWN BINARIES

All simulations that we conducted so far showed the following
result. If the parameters were set up so that collisional grinding
produced the SFD rollover of cold CKB at R∗ = 25–50 km,
the final binary fraction showed a strong gradient with radius.
Therefore, such a gradient, if identified by observations of binary
KBOs, would be a direct evidence for the extensive collisional
grinding in the KB. The absence of such a gradient, on the other
hand, would indicate that the rollover is more likely accretional.

Figure 10 shows the fraction of binaries in the cold CKB
that can be inferred from the existing observations (Noll et al.

2008a, 2008b). The fraction shown here was roughly corrected
for the main observational biases. For example, the secondaries
can be more difficult to detect near small primaries due to
their intrinsic faintness and also because physically smaller
components are expected to have smaller separations. We
normalized each binary to HV = 8.3 by scaling its component
radii and separation by a factor. The binaries with normalized
separations smaller than 0.032 arcsec, which was the smallest
separation detected in the data set, were removed. In total, only
5 out of 33 binaries were removed by this procedure indicating
that the observational bias is not overly important.

The statistical errors shown in Figure 10 are large, making it
difficult to reach definitive conclusions. Still, some interesting
features can be pointed out from data. First of all, the binary
fraction for HV � 5.5 (R � 100 km) seems to be lower than the
one for HV > 5.5. Since these large binaries would be relatively
resistant to collisions during the solar system history, their
paucity probably tells us something about the binary formation
process.

The fraction of binaries with HV > 5.5 (R < 100 km)
does not show any strong gradient with HV (or R). Instead,
the binary fraction is relatively constant and large down to the
smallest surveyed objects (R ∼ 30 km). In contrast, we found in
Section 3 that the effects of collisional grinding should deplete
binaries with R ∼ 30 km, relative to those with R ∼ 100 km,
by a factor of ∼10. We therefore believe that the existing data
are not suggestive of the kind of trends that we would expect to
see in a population that experienced strong collisional grinding.
This may indicate that the SFD rollover in the cold CKB at
R∗ = 25–50 km was not produced by disruptive collisions, but
was instead already in place when KBOs were forming.

Better observational statistics will be needed, especially for
R � 30 km, to test this preliminary conclusion. Additional
caution needs to be exercised when comparing our collisional
model results with observations, if the formation mechanism
was capable of producing the binary fraction that strongly varied
with R. For example, a roughly constant binary fraction could
result from a combination of the formation and evolution effects,
if the initial fraction was larger for smaller R and was modified
by the collisional removal of small binaries. On the other hand,
it is unlikely that the initial binary fraction was exactly 100%,
as assumed here. If it were lower, our results could be used to
place even harder limits on the extent of collisional grinding
in KB.

Another interesting feature in Figure 10 is the dip at HV = 6.8
(R = 60–70 km), where only 2 out of 31 surveyed cold CKBOs
(≈6%) turned out to be binary. Our collisional simulations were
capable of producing such a dip (see, e.g., Figure 4(b)), but at
smaller radii (R = 10–20 km). We performed a Monte Carlo
search in parameter space to identify cases that could produce
the observed dip at R = 60–70 km. The best results were
obtained with the initial break at R > 10 km, vi < 100 m s−1,
and substantial initial mass. The low collisional speeds were
required here so that the dip radius ended up to be only a factor
of ∼2 larger than the final SFD rollover radius. The SFD for
R > 10 km did not change much in these simulations implying
that the SFD rollover at R∗ = 25–50 km would have to be pretty
much in place before the collisional evolution started.

5. CONCLUSIONS

The work presented here shows how the KB could have
been affected by collisions. We found that extensive collisional
grinding, required if the SFD rollover at R∗ = 25–50 km in
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cold CKB were collisional, should imply a strong gradient of
binary fraction as a function of R and separation. The current
observational data do not show signs of such a gradient and
instead suggest that small binaries (R < 50 km) are at least as
common as the large ones (R > 50 km). This may indicate that
the SFD rollover of cold CKBOs at R∗ = 25–50 km is not due to
a prolonged phase of collisional grinding in the KB. Instead, the
rollover may be a fossil remnant of the KBO formation process.
Future surveys of small binary KBOs will be able to test this
conclusion.
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Tsiganis, K. 2009, Nature, 460, 364
Levison, H. F., & Duncan, M. J. 1997, Icarus, 127, 13
Levison, H. F., Morbidelli, A., Vanlaerhoven, C., Gomes, R., & Tsiganis, K.

2008a, Icarus, 196, 258
Levison, H. F., Morbidelli, A., Vokrouhlický, D., & Bottke, W. F. 2008b, AJ,
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