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ABSTRACT

The Deep Ecliptic Survey (DES) was a survey project that discovered hundreds of Kuiper Belt objects from 1998
to 2005. Extensive follow-up observations of these bodies has yielded 304 objects with well-determined orbits
and dynamical classifications into one of several categories: Classical, Scattered, Centaur, or 16 mean-motion
resonances with Neptune. The DES search fields are well documented, enabling us to calculate the probability on
each frame of detecting an object with its particular orbital parameters and absolute magnitude at a randomized
point in its orbit. The detection probabilities range from a maximum of 0.32 for the 3:2 resonant object 2002 GF32
to a minimum of 1.5 × 10−7 for the faint Scattered object 2001 FU185. By grouping individual objects together
by dynamical classes, we can estimate the distributions of four parameters that define each class: semimajor axis,
eccentricity, inclination, and object size. The orbital element distributions (a, e, and i) were fit to the largest three
classes (Classical, 3:2, and Scattered) using a maximum likelihood fit. Using the absolute magnitude (H magnitude)
as a proxy for the object size, we fit a power law to the number of objects versus H magnitude for eight classes
with at least five detected members (246 objects). The Classical objects are best fit with a power-law slope of
α = 1.02 ± 0.01 (observed from 5 � H � 7.2). Six other dynamical classes (Scattered plus five resonances) have
consistent magnitude distribution slopes with the Classicals, provided that the absolute number of objects is scaled.
Scattered objects are somewhat more numerous than Classical objects, while there are only a quarter as many 3:2
objects as Classicals. The exception to the power law relation is the Centaurs, which are non-resonant objects with
perihelia closer than Neptune and therefore brighter and detectable at smaller sizes. Centaurs were observed from
7.5 < H < 11, and that population is best fit by a power law with α = 0.42±0.02. This is consistent with a knee in
the H-distribution around H = 7.2 as reported elsewhere. Based on the Classical-derived magnitude distribution,
the total number of objects (H � 7) in each class is: Classical (2100 ± 300 objects), Scattered (2800 ± 400),
3:2 (570 ± 80), 2:1 (400 ± 50), 5:2 (270 ± 40), 7:4 (69 ± 9), 5:3 (60 ± 8). The independent estimate for the number
of Centaurs in the same H range is 13 ± 5. If instead all objects are divided by inclination into “Hot” and “Cold”
populations, following Fraser et al., we find that αHot = 0.90 ± 0.02, while αCold = 1.32 ± 0.02, in good agreement
with that work.
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1. INTRODUCTION

Studies of the Kuiper Belt have progressed in the last two
decades from finding individual objects (Jewitt & Luu 1993)
to estimating the total number of objects in the outer solar
system through observations and statistics (e.g., this work;
Petit et al. 2011; Gladman et al. 2012). The Kuiper Belt itself
has been subdivided into many distinct dynamical classes of
objects, including objects in mean-motion resonances with
Neptune, high and low inclination populations (Hot versus
Cold; e.g., Morbidelli et al. 2008), and various groupings of
Scattered objects that have undergone dynamical interactions
with Neptune. The relative numbers of objects in all of these
populations offer one of the best direct observational constraints
on different dynamical models of solar system formation and
evolution.

A recent renaissance in modeling has resulted in a number
of mostly successful attempts to reproduce the architecture of
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the solar system. Scattering and migration of the giant planets
should leave directly observable signatures in the dynamical
structure and numbers of small bodies remaining in the asteroid
and Kuiper Belts and the outer satellites (Levison et al. 2008;
Morbidelli et al. 2009; Bottke et al. 2012). Some models, such
as the Nice Model (Gomes et al. 2005; Morbidelli et al. 2005;
Tsiganis et al. 2005) and the “Grand Tack” (Walsh et al. 2012),
invoke large-scale, abrupt motion by the giant planets. Other
models assume that giant planet migration proceeded more
smoothly, and predict different ratios of objects captured into
mean-motion resonances with Neptune (Malhotra 1993; Hahn
& Malhotra 2005).

Most models to date can successfully account for some—but
not all—features of the Kuiper Belt, such as reproducing the
Cold but not the Hot Classical populations (smooth migra-
tion), or leaving particular resonances over- or under-populated
relative to the apparent populations (most models). Observa-
tional constraints can be used to distinguish between models
and resolve fundamental questions, such as how Neptune mi-
grated outward: smoothly on a nearly circular orbit (e.g., Hahn
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& Malhotra 2005), through dynamic scattering with potential
high eccentricity which was later damped down (e.g., Levison
et al. 2008; Walsh et al. 2012), or some other mechanism. This
fundamental debate is evident in recent meetings, where one
presentation concluded that chaotic capture models are more
likely based on colors of resonant Kuiper Belt objects, or KBOs
(Sheppard 2012), while another (Noll et al. 2012) claimed that
the large binary fraction in the Cold population favors smooth
migration, since the mechanism of Levison et al. (2008) to push
out the Cold population would not preserve as many binary ob-
jects. However, it is also possible to have models with elements
of both: a Nice-like initial migration that proceeds smoothly
into a pre-existing Cold population of objects that formed in
situ would not be ruled out by the binary fraction (Parker &
Kavelaars 2010).

Until recently, comparisons to observations have been disad-
vantaged because the known sample (over 1600 objects) is an
inherently biased population, due to the difficulty of obtaining
observations of faint, distant objects. What is needed is a de-
biased population of objects, that is to say, a relatively large
sample of objects discovered by a wide-field, all-sky survey that
have had the sources of bias accounted for and removed. Two
surveys with large discovery samples have recently begun to
provide such results. The Canada-France Ecliptic Plane Survey
(CFEPS), with a sample of 169 objects with high-quality orbits,
reported de-biased population estimates in Petit et al. (2011)
and Gladman et al. (2012).

Here we report the results of the Deep Ecliptic Survey (DES;
Millis et al. 2002; Elliot et al. 2005), the largest single survey to
date, which has discovered about 500 objects with provisional
designations by the Minor Planet Center (MPC). Of these ob-
jects, 304 have high-quality orbits suitable for dynamical clas-
sifications. The de-biased class populations presented in this
paper offer a completely independent check on the CFEPS re-
sults, on both the absolute and relative numbers of objects, since
the DES uses a different set of objects and discovery fields and
a new approach to de-biasing. The DES sample also more than
doubles the number of de-biased objects available, particularly
in the small-number classes of high-order resonances and Scat-
tered objects. Finally, we hope that the approach described in
this paper will be useful for obtaining uniformly de-biased re-
sults of the expected thousands or tens of thousands of objects
found by future large-scale surveys, such as the Large Synoptic
Survey Telescope (LSST; Ivezic et al. 2008) and Pan-STARRS
(Grav et al. 2011).

In Section 2 we describe the data and briefly review the choice
of classification scheme. In Section 3 we present the analytical
framework for calculating the detection probabilities. Section 4
contains the numerical implementation of the detection proba-
bilities and the methods used to estimate the number of objects
in each class. In Section 5 we compare our results to other
surveys. In Section 6 we relate our observations to theories of
planetary formation.

2. OBSERVATIONS

A full description of the DES can be found in Millis et al.
(2002) and Elliot et al. (2005, henceforth E05), but the relevant
details are summarized here. The DES was a National Optical
Astronomical Observatory (NOAO) survey. Two 4 m telescopes
(the Mayall at Kitt Peak in Arizona and the Blanco at Cerro
Tololo in Chile) were used, with identical Mosaic cameras with
eight SITe CCD chips, each chip measuring 4096 × 2048 pixels.
Each mosaic image covers about 0.35 deg2 on the sky. Each

field was within ±6.◦5 of the ecliptic and was selected to have at
least 35 USNO-B astrometric reference stars on each chip. The
fields were also chosen to exclude stars brighter than magnitude
V = 9.5 (Millis et al. 2002). Typically two 300 s exposures
would be taken on the same night a few hours apart, with a
third frame on another night during the same observing run.
This resulted in orbital arcs of at least 24 hr (required for
a designation by the MPC). Most of the fields imaged were
distinct, but sometimes frames of the same field taken several
years apart were counted as new search fields, since by that time
a new set of objects would have moved into the field area. In
2005, the DES stopped surveying new fields, although recovery
efforts to improve orbits and classifications of known objects
have continued.

In order to obtain as uniform a sample as possible, for this
work several selection criteria were applied to both the search
fields and the objects discovered by the DES, as described below.

2.1. Search Frame Selection

The discovery phase of the DES ended on 2005 May 11. A
few KBOs were discovered during subsequent recovery efforts,
but are not included in our sample since they were found under
different search conditions. (For objects that were discovered
during the main survey, we used the latest available orbital
information to assign dynamical classes and calculate discovery
probabilities.)

A total of 62,392 individual frames are in the DES database,
corresponding to one of the eight CCD detectors on the Mosaic
camera. Of these, 14,440 were not suitable for de-biasing
because these frames were specifically targeted at the recovery
of particular objects. Targeted recovery frames were not held
to the same criteria for the number and brightness of stars, and
have different statistical properties. An additional 1312 frames
with solar elongation angle less than 140◦ were eliminated,
because they have a different search efficiency than the bulk of
the frames, which were taken near opposition. (Over twice as
many objects were found on high solar elongation frames than
on low-elongation frames.)

The 46,640 individual frames left were then paired up with
matching frames. Each field was observed at least three times:
a pair of images taken on the same night a few hours apart,
and one image on another night. Sometimes additional frames
were taken, for instance if weather interrupted the original
observations. Only the pair of frames on the same night was
used to search for objects. There were 18,668 pairs of frames
that met these criteria. The overlap fraction for each pair is quite
high, with a median positional offset of 0.′′026. Each frame is
1065′′ × 532′′, and the largest mis-registration was less than 80′′
in R.A. and less than 90′′ in declination.

2.2. Object Selection

As of 2012 August, a total of 913 KBOs were listed in
the DES internal database. Some objects have been excluded
from this analysis because they were found outside the main
survey, during recovery or other follow-up observations (101
objects). We also exclude eight objects found on low solar
elongation fields (<140◦). Several additional objects, typically
those that were lost shortly after discovery, are excluded because
of missing information: objects lack discovery field coordinates
(36 objects), discovery distances (104 objects), or discovery
magnitudes (1 object). This leaves 663 objects discovered during
the main DES survey.
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Of these objects, 478 objects had sufficient observations post-
discovery to receive preliminary designations from the MPC
(72%). Dynamical classification typically requires additional
observations to achieve low enough errors, and 316 objects
(48%) have been classified (see Section 2.3). Almost all (304)
of these classifications are considered to be secure (quality 3
as defined in E05). For our analyses, we used the 304 securely
classified DES objects.

We note that there is a potential for recovery bias in the
particular subset of objects that were both discovered and
classified by the DES. One could imagine that objects in unusual
orbits could be missed more frequently than objects that were
closer to their predicted location when follow up observations
were taken a few months later. However, we do not think that
this recovery bias introduces a major problem for the current
work for the following reasons. (1) The single biggest reason
for failure to recover an object was insufficient telescope time
to re-observe an object within three months of discovery, after
which observations were typically not attempted; this affected
objects in all orbits alike. It was more likely that an object
was lost because we did not have enough clear weather nights
than because we looked in the wrong place and did not find it.
(2) When the estimated orbital parameters for the lost objects
were compared to those that were ultimately designated and
classified, Elliot et al. (2005) found that the only main difference
was that the lost objects were fainter (and thus would be harder
to recover on an average frame). In this work we find that the
rate of recovery was twice as high for objects with brighter
discovery magnitudes (Mdisc � 23) than for fainter objects, and
we only do analyses using the better-recovered subset of brighter
objects. Future work is planned to deal with the fainter objects,
including the improved magnitude calibration, and we will also
more fully explore the recovery bias at that time.

2.3. Dynamical Classification

Over the years, several different schema for dynamically
classifying KBOs have been proposed (e.g., Elliot et al. 2005;
Lykawka & Mukai 2007; Gladman et al. 2008). In this paper, we
use the current DES classification scheme, a modified version
of the scheme laid out in E05 which incorporates the Scattering
concept from Gladman et al. (2008). Since differences in the
precise definitions of classes can affect the membership of
objects and consequently the parameters derived for the class,
we describe our classification scheme in full below.

To test for the dynamical class of an object, we use both
the current observed orbital parameters as well as a 10 Myr
integration of the orbit forward in time, and two additional
10 Myr integrations for the ±3σ values for a, e, and i. An object
is said to be securely classified (quality 3) only if all three
integrations agree on the same dynamical class. (In quality
2 objects, the nominal classification only agrees with one of
the +3σ or −3σ integrations, while in quality 1 it agrees with
neither.)

An object is tested for membership in each of the following
dynamical classes, in order. (1) Resonant objects occupy a
mean-motion resonance with Neptune (resonances up to ninth
order are identified from libration in the resonant angle). (2)
Centaurs have osculating perihelia that reach values less than
the osculating semimajor axis of Neptune. (3) Scattered Near
objects have a values that vary by more than an arbitrary amount,
Δa � 0.02, over the 10 Myr integration (where Δa = (amax −
amin)/amean). This is along the same lines as the Scattering class
of Gladman et al. (2008), which uses amax − amin > 1.5 AU.

An excitation statistic, s =
√

e2 + sin(i)2, is applied to the
remaining objects, which are sent to two additional classes:
(4) Scattered Extended objects have s � 0.25, and (5) Classical
objects have s < 0.25. Note that the exact criteria used can
have an important impact on class membership: for instance,
what might in other works be considered Hot Classical objects
(low e, large i) with i > 15◦ would be classified as Scattered
Extended under this scheme.

For the purposes of this paper, we have re-grouped a few
objects in order to be more broadly consistent with the classes
used by CFEPS and elsewhere. First, we restrict the population
of Centaurs to only those with semimajor axes less than
Neptune’s (resulting in a population of smaller objects than
found in any other class, due to the magnitude bias toward
finding closer objects). Second, we group all of the dynamically
excited objects with aNep � a � 80 AU into a single Scattered
class, which contains objects from the Centaur, Scattered-
Near, and Scattered-Extended classes. Ten objects with a =
82–739 AU are not considered in this analysis, because they are
too sparse in parameter space to adequately define a dynamical
class; for a brief discussion of such rare objects see Section 5.3.

3. ANALYTICAL FRAMEWORK

We now consider how we can use the sample of KBOs
discovered by the DES to learn about the entire population of
KBOs. Dynamical classes for KBOs have been defined with
the underlying assumption that the members of each class
have experienced a common formation process and common
dynamical evolution. Hence, we shall consider the objects in
each dynamical class separately. Within a dynamical class, we
assume that the DES discoveries give us a sampling of the
greater population of the objects, which can be characterized
by four distribution functions: one each for the H magnitude,
semimajor axis a, eccentricity e, and inclination i.

In Section 3.1, we develop the equations to compute the
probability of detection by the DES for each object, as a function
of H, a, e, and i. In Section 3.2, we present the distribution
functions that we assume are followed by the general population
of the dynamical class for the same four parameters. Finally, in
Section 3.3 we develop a maximum likelihood (ML) model to
fit the data. From this fit, we determine, with error bars, the
parameters of the four distribution functions and the number
of objects in each dynamical class, within the range of orbital
parameters probed by the DES discoveries. We have chosen
to apply the ML technique directly, rather than applying least-
squares fitting to binned data, since the objects per bin are sparse
in the four-dimensional H, a, e, and i space (see chapter 10 of
Bevington & Robinson 2003).

3.1. Probabilities of Detection

To compute the probability that an object would have been
detected by the DES at some time during the survey, we extend
the methods described in E05 to include observational biases
introduced by an object’s H, a, e, and i values. We refer all
inclinations to the Kuiper Belt plane (KBP), as derived in E05
(i = 1.◦74 ± 0.◦23, Ω = 99.◦2 ± 6.◦6), which is consistent
with the invariable plane of the solar system at the 1σ level.
Following the approach used in E05, we consider a set of NO
objects (j = 1, . . . , NO) discovered in a set of NF search fields
(k = 1, . . . , NF ). For the jth object discovered by the survey,
we denote its H magnitude, semimajor axis, eccentricity, and
inclination by the symbols Hj, aj, ej, and ij. We assume that
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the H magnitude of an object is not correlated with its orbital
elements, and that angles that describe the orientation of the orbit
in three-dimensional space average out over time. (For resonant
objects, this assumption is not quite true, and is addressed in a
separate bias factor discussed below.)

Each of the NF fields of the survey data set is characterized
by (1) the magnitude for which the detection efficiency has
dropped to 1/2, which we denote by m1/2,k , (2) the Kuiper Belt
latitude and orientation, or tilt, of the frame (βK and θK ), used
to calculate which orbits pass through a field, (3) the Kuiper
Belt longitude of the frame (λK ), and (4) the solid angle, Ωk ,
subtended by the search field. Below we describe how biases
related to all four of these characteristics have been removed.

1. We assume that all search fields have the same maximum
efficiency at bright magnitudes, εmax, and the same char-
acteristic range, σm, over which the detection efficiency
drops from εmax to 0; as in E05, we have fixed the values
of σm = 0.58 and εmax = 1. For the kth search field, we
employ the functional form used by Trujillo et al. (2001)
and in E05 (their Equation (19)) for the detection efficiency
as a function of magnitude, ε(m,m1/2,k):

ε(m,m1/2,k) = εmax

2

[
1 + tanh

(
m1/2,k − m

σm

)]
. (1)

Due to its elliptical orbit, the magnitude of the jth object
varies from mmin,j to mmax,j (considering solely distance
variations and ignoring physical changes). Between these
extremes, the relative time that the object is at magnitude
m is given by the probability distribution function pj (m)
for the jth object. Hence the likelihood, ξmag,j,k , for the jth
object being discovered in the kth search field due solely
to its magnitude (we shall consider other factors later) is
given by

ξmag,j,k =
∫ mmax,j

mmin,j

pj (m)ε(m,m1/2,k)dm. (2)

Our strategy for evaluating the integral in Equation (2)
involves transforming it from an integral over magnitude
to an integral over heliocentric distance. To do this we
make several simplifying assumptions. First we assume that
all objects are discovered at opposition, and we set the
Earth–Sun distance to 1 AU when computing the variation
in the opposition magnitude of an object throughout its
orbit. We define Rd,j as the heliocentric discovery distance
for the jth object and md,j as its discovery magnitude. We
neglect photometric variability due to changing phase angle
and/or rotational light curve, since the mean amplitude of
variability is only 0.1 mag, with only 15% of all KBOs
varying by more than 0.15 mag (Thirouin et al. 2010). Then
the magnitude of the jth object at a heliocentric distance R
is given by the equation,

mj (R) = md,j + 5 log10(R/Rd,j ) + 5 log10

× [(R − 1 AU)/(Rd,j − 1 AU)]. (3)

For the jth object, the minimum and maximum heliocen-
tric distances are Rmin,j and Rmax,j respectively:

Rmin,j = aj (1 − ej ), (4)

Rmax,j = aj (1 + ej ). (5)

To find the amount of time that the jth object spends at
a given heliocentric distance, R, it is possible to directly
numerically integrate a two-body orbit and then calculate
the amount of time spent in each distance bin. However,
this approach is far too slow for an equation that is called
frequently, and there are no good analytical approximations
that work near perihelion and aphelion, where the proba-
bility of finding an object peaks sharply. We thus calcu-
lated a grid of numerical integrations using e = 0.001 and
e = 0.01–0.99 (Δe = 0.01). For each eccentricity, we fit a
piecewise function composed of five line segments (f1 to f5)
at predefined break points (p1 to p4). The coordinates for the
slopes and offsets and break points of each line are stored
for each eccentricity in a python executable file, and may be
quickly called during numeric integrations. The function,
which has been normalized over the allowed R range, is
scaled to the appropriate a value when called. Tests indi-
cate that the results are within ±15% of the values obtained
using numeric integration (for objects with a <= 80 AU,
which is the cutoff in this paper for the Scattered class).

pj (R) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 R < Rmin,j

f1(e, R) Rmin,j � R � p1
f2(e, R) p1 � R � p2
f3(e, R) p2 � R � p3
f4(e, R) p3 � R � p4
f5(e, R) p4 � R � Rmax,j

0 R > Rmax,j .

. (6)

We are now in a position to rewrite Equation (2) in
terms of an integral over heliocentric distance. Since our
approximations reduce the apparent magnitude of an object
with a given H magnitude to only the variation that depends
on its semimajor axis and eccentricity, we emphasize
this by using the symbol ξj,k(H, a, e) for the likelihood
factor instead of ζMAG,j,k used in E05 (see the Glossary
in their Appendix C). Substituting pj (R)dR for pj (m)dm
in the integral and changing the limits of integration from
magnitudes to the corresponding heliocentric distances, we
find

ξj,k(H, a, e) =
∫ Rmax,j

Rmin,j

pj (R)ε(mj (R),m1/2,k)dR. (7)

Equation (7) can be evaluated with substitutions from
Equations (1), (3), and (6), using Equations (4) and (5) to
set the limits of integration.

2. We now consider the bias factor for inclination, ξj,k(i),
using the same approach as in the inclination distribution
analysis of Gulbis et al. (2010, hereafter G10). First we
write an expression for the conditional probability of
finding an object at latitude β with an inclination i, which
is Equation (9) of G10:

p(β|i) =
⎧⎨
⎩

cos β

π
√

sin2 i−sin2β
sin i > | sin β|

0 sin i � | sin β| & i �= β �= 0
1 i = β = 0

.

(8)
(Note that in G10 and this work all inclinations and latitudes
are relative to the KBP.)

We define ξj,k(i) as the likelihood (based on the incli-
nation alone) of detecting the jth object in the kth search
field, which we determine by integrating the conditional
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probability for the inclination, ij, over the range of KBP
coordinates covered by the kth search field:

ξj,k(i) =
∫ βmax,k

βmin,k

Δλ(β ′
k, θk)p(β ′

k|ij ) dβ ′
k, (9)

where Δλ is the range of longitudes at each latitude on
the frame (a geometric parameter derived in G10, their
Equations (11)–(14)), and θK is the tilt of the frame with
respect to the KBP.

3. Resonant objects, by definition, oscillate around the reso-
nant angle with a certain amplitude. Observationally, this
has the effect that they are observed preferentially at some
longitude relative to Neptune but not at others. Using the li-
bration amplitudes found in a 10 Myr integration of the orbit
of each object, we can determine a longitude bias, where the
fields in the allowed longitude range, λj,min � λ � λj,max,
are upweighted and all other longitudes are set to zero (note
that for non-resonant objects ξ = 1):

ξlong,j =
{

360/(λj,max − λj,min) λj,min � λ � λj,max
0 otherwise .

(10)
4. A minor correction is included for the solid angle of each set

of fields that is available for object searches. The effective
search area for a pair of frames varies slightly due to mis-
registration (typically a few arcseconds) and obscuration by
other objects on the field. Defining Ωs as the solid angle of a
full CCD and Ωk as the net solid angle for the kth CCD, the
solid angle component of the likelihood factor (following
E05) is

ξang,k = Ωk/Ωs . (11)

Neglecting any correlation among a, e, i, and H, the
combined likelihood, ζj,k(H, a, e, i), for detecting the jth
object in the kth search field is the product of the four
separate likelihood components in Equations (7), (9), (10),
and (11):

ζj,k(H, a, e, i) = ξj,k(H, a, e)ξj,k(i)ξlong,j ξang,k. (12)

If we had observed all the search fields simultaneously,
then the probability for having detected the jth object for
the NF search fields would be equal to the sum of the
probabilities for each search field. This would be the case
for a single night, or even a single lunation. However, we
observe the search fields over a period of years, with the
possibility of an object moving between search fields, so
instead we take the efficiency of detecting the objects to
be 1 minus the product of the likelihoods of having not
detected it in each search field. We refer to this quantity
as the detection probability of the survey for the jth object,
qdet(Hj, aj , ej , ij ):

qdet(Hj, aj , ej , ij ) = 1 −
NF∏
k=1

(1 − ζj,k(H, a, e, i)). (13)

From the probability of detecting each individual object
and other assumptions, we can characterize the distribution
of unbiased orbital parameters and estimate the numbers of
objects in each of the dynamical classes, as described in the
next section.

3.2. Distribution Functions for H Magnitude
and Orbital Parameters

For each class of objects, we want to determine the distribu-
tion functions for the parameters defining the class (a, e, i, and
H). Here we present the functional forms used.

The simplest differential H magnitude distribution function,
pH (α,H ), is an exponential function with exponent α. (We later
present evidence for a double exponential, with two different
power law indices following a break point, but since the break
point lies near or outside of the range of the distribution functions
for the classes we can fit, we only use a single exponent here.)
All distribution functions are normalized over the full range of
parameters considered, where cH is a normalization constant
so that the integral of the distribution function between Hmin
to Hmax is equal to one. Thus the form of the H distribution is
modeled using:

pH (α,H ) =
{
cH 10αH Hmin � H � Hmax,
0 H < Hmin or Hmax < H,

(14)

where

cH = α ln 10

10αHmax − 10αHmin
. (15)

Next we consider the differential distribution function for
semimajor axes. Between amin and amax for each class, we model
this distribution function, pa(ao, Δa, a), as a Lorentzian with its
central peak offset from zero by ao and FWHM of 2Δa:

pa(ao, Δa, a) =
{ ca

1+[(a−ao)/Δa ]2 amin � a � amax,

0 a < amin or amax < a,
(16)

where the normalizing constant, ca, is given by

ca = 1

Δa [arctan ((amax − ao)/Δa) − arctan ((amin − ao)/Δa)]
.

(17)
The distribution of eccentricities is similarly modeled as

a single Lorentzian with parameters eo, Δe, and ce, using
analogous versions of Equations (16) and (17).

The inclination distribution is also represented as a single
Lorentzian, using io, Δi , and ci. However, we note that other
models have been used for the Classical distribution, notably
a double Gaussian that represents two populations of objects,
the “core” and “halo” populations (Brown 2001; Elliot et al.
2005; Gulbis et al. 2006), or alternately the “Hot” and “Cold”
populations. To be specific, the first Gaussian component is the
narrower one (core) and has a characteristic width (the standard
deviation in the Gaussian expression) of Δi1. The second
Gaussian component is broader (halo) with a characteristic
width Δi2 > Δi1. We normalize each component separately, and
b is a number between zero and one, representing the fraction
of objects in the narrower Gaussian component. The inclination
distribution function, pi(b, Δi1, Δi2, i), can be written as:

pi(b, Δi1, Δi2, i)

=
{

bci1√
2πΔ2

i1

exp −i2

2Δ2
i1

+ (1−b)ci2√
2πΔ2

i2

exp −i2

2Δ2
i2

imin � i � imax

0 i < imin or imax < i
.

(18)
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The normalizing constants, ci1 and ci2, are given by:

ci1 = 1

I (Δi1, imax) − I (Δi1, imin)
and

ci2 = 1

I (Δi2, imax) − I (Δi2, imin)
, (19)

where the integral, I (Δ, i) is given by the error function (erf):

I (Δ, i) = 1

2
erf

(
i√
2Δ

)
. (20)

Using the current definition of the Classical class, however, this
double Gaussian model is not required (see Section 4.2.2).

3.2.1. Range of Normalization

In order to include information from all frames, whether or
not objects were detected on them, all distribution functions are
normalized over the considered range of parameters. The e and
i values are normalized over the full range of parameter space
(e = 0–0.95 to avoid hyperbolic orbits, and i = 0◦–170◦ to
avoid numerical effects around 180◦; the effect of stopping the
integrals just shy of the full range is insignificant, and no actual
objects were found with those parameters). For the a values,
we used the minimum and maximum observed values in each
class: the distribution of 3:2 objects is shaped by dynamics, and
we do not expect it to continue outside of the observed range
of semimajor axes (a = 39–40 AU), while for the Classical
and Scattered classes enough objects are observed far from the
main peak of objects that a difference in a few AU on either side
has very little effect on the normalization. The H distributions,
which are exponential functions, are normalized over the range
of objects detected, and do not provide any information about
brighter or fainter objects than the ones we found.

3.3. Maximum Likelihood Estimation of Distribution Functions

Using the functional forms defined in the previous section,
we can now estimate the unbiased distribution of objects in a, e,
i, and H, as well as the total number of objects per class. Both
tasks are accomplished using an ML method.

3.3.1. Distribution Function Parameters

For each dynamical class, we fit for the parameters that
best fit the unbiased distribution functions. We do this using
a likelihood function, L, which is given by a product over every
discovered object, j, of the probability density functions, raised
to the inverse power of the detection probability for that object:

L =
N0∏
j=1

[pH (α,Hj )pa(ao, Δa, aj )

× pe(eo, Δe, ej )pi(b, Δi1, Δi2, ij )]1/qdet(Hj ,aj ,ej ,ij ). (21)

Each class has a different set of parameters, and each dis-
tribution has been normalized over the range considered (see
Section 3.2.1) so that information from fields that did not detect
objects is included in this fit.

Computationally, it is easier to maximize the natural
logarithm of L, defined as M:

M =
N0∑
j=1

ln
[
pH (α,Hj )pa(ao, Δa, aj )pe(eo, Δe, ej )pi(b, Δi1, Δi2, ij )

]
qdet(Hj, aj , ej , ij )

.

(22)

To calculate the errors, we assume that the number of objects
in the sample is great enough so that the formal errors on the
ML estimates approximately follow a Gaussian distribution,
using the method of Crooke et al. (1999). We define the
matrix X as a j × n matrix, where there are j objects and
n parameters (α, ao, Δa, eo, Δe, b, Δi1, and Δi2 if a double-
Gaussian inclination model). Each element Xj,n is given by
the expression:

Xj,n = δM

δxn

∣∣∣∣
H=Hj ,a=aj ,e=ej ,i=ij

. (23)

The correlation matrix, C, can be expressed in terms of X:

C = [XT X−1]. (24)

The variance of the parameter xn is given by the appropriate
diagonal element, Cn,n, of the correlation matrix, and the
standard deviation is found by taking the square root:

σn = √
Cn,n. (25)

3.3.2. Inferred Number of Objects

Once we have determined the parameters for all of the
unbiased distribution functions, we can estimate the number
of objects in the class, again using ML. Within the range of H,
a, e, and i values that the ML distribution function parameters
are valid, we assume that the total population for a dynamical
class is well described by the distribution functions. Given that
assumption, we calculate the fraction of the total population
detected by the DES, f, where 0 � f � 1, by integrating the
distribution functions over the detection probability of the range
of object parameters:

f =
∫ ∫ ∫Hmax,amax,emax,imax∫
Hmin,amin,emin,imin

qdet(H, a, e, i)pH (α,H )pa(ao, Δa, a)

× pe(eo, Δe, e)pi(b, Δi1, Δi2) dH da de di. (26)

To turn the discovered fraction of objects into an estimated
total number of actual objects, with error bars, we use the gen-
eralized binomial distribution, along with another ML function,
where the observed number is No, the actual number of objects
is N ′

o, and Γ is the gamma function:

L(N ′
o) = N ′

o!

No!(N ′
o − No)!

f No (1 − f )N
′
o−No

= Γ(N ′
o + 1)

Γ(No + 1)Γ(N ′
o − No + 1)

f No (1 − f )N
′
o−No (27)

and thus

M(N ′
o) = ln

[
Γ(N ′

o + 1)

Γ(No + 1)Γ(N ′
o − No + 1)

]
+ No ln f + N ′

o − Noln(1 − f ). (28)

The number of objects, N ′
o, is found by maximizing

Equation (28), while the error is found by numerically calculat-
ing the total derivative:

σ (N ′
o) = 1

/√∣∣∣∣dM(N ′
o)

dN ′
o

∣∣∣∣. (29)
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Table 1
Objects per Class

Class All Also Also Also
Q = 3a md � 23 H � 7.5 H � 7.2

1:1 1 1 1 0
2:1 7 6 5 5
3:1 1 1 0 0
3:2 51 49 33 27
4:1 1 1 1 1
4:3 3 3 1 1
5:2 7 6 6 3
5:3 5 5 3 2
5:4 3 3 3 2
7:2 1 0 0 0
7:3 3 3 2 0
7:4 11 10 9 8
9:4 3 3 3 3
9:5 2 1 1 1
11:6 1 1 1 1
12:5 1 1 1 1
Classical 144 130 129 122
Centaurb 8 7 1 0
Scatteredc 41 33 24 22
Fard 10 9 7 6

Total 304 273 231 205

Notes.
a Secure orbital classifications (quality 3) only.
b The Centaur class in this analysis is restricted to dynamical Centaurs with
a � aNep.
c The Scattered class in this analysis is restricted to dynamical Centaurs,
Scattered-Near or Scattered Extended objects with aNep < a � 80 AU.
d Far objects are dynamical Centaurs, Scattered-Near or Scattered Extended
objects with a > 80 AU.

4. NUMERICAL IMPLEMENTATION

4.1. Calculating Detection Probabilities

Numerical implementation was done using Mathematica
8.0 and Python 2.7.3. Equation (13) gives the probability of
detecting an object with an orbit described by a, e, and i,
an absolute H magnitude, and which was discovered with
magnitude md at distance Rd. Values for a, e, i, and H listed in the
DES database in 2012 March were used in these calculations.

Although 304 DES objects have the highest-quality or-
bital classification, we restrict our sample to the 273 objects

discovered with a VR magnitude of 23 or brighter. The nominal
50% detection efficiency of the DES determined by E05 was
VR = 22.5, with VR = 23 corresponding to an efficiency of
15%, although the actual efficiency varies from frame to frame.
The original photometric calibration of the DES (used in this and
previous work) was based on the USNO-B1.0 catalog, which is
however known to have magnitude uncertainties up to 0.5 mag.
Recent recalibration of the DES (Buie et al. 2011) has been com-
pleted but not yet reapplied to the survey results. Future work
using the revised photometry will have much more reliable mag-
nitudes, particularly for objects detected at the faint edge of the
DES’s range. Until the re-calibrated data is available, we have
calculated probabilities for all 304 objects, but restricted the
de-biased class analysis to objects with md,VR � 23. Table 1
shows the number of objects the DES found in each dynami-
cal class, as well as the breakdown for objects with md � 23
and additional H magnitude constraints used in subsequent
fits to single exponential functions. Three non-resonant classes
(Centaur, Classical, and Scattered) and 16 resonances (five with
�5 objects) have been identified for the following analysis.

The detection probabilities (Equation (13)) have been calcu-
lated for all objects with secure orbits, as shown in Column 2 in
Table 2. The probabilities range from a maximum of 0.32 for the
3:2 resonant object 2002 GF32 to a minimum of 1.5 × 10−7 for
the faint Scattered object 2001FU185. (Similar low probability
objects are discussed in Section 5.3.)

4.2. Estimating Size Distribution

Modelers work in physical sizes, while observers deal with
apparent magnitudes, and properly comparing the results of the
two requires some conversions and assumptions. The absolute,
or H magnitude, which is easily derived from the observations,
is the preferred variable where both types of researchers can
meet. Very few KBOs have actual measured diameters (e.g.,
Elliot et al. 2010), so observers would have to make assumptions
about the object’s physical properties, such as the albedo (widely
variable among KBOs; Stansberry et al. 2008) to produce
sizes. Using the apparent magnitude, as many observers and
modelers have unfortunately done, is not recommended, because
it conflates detection biases and leads to errors. We recommend
that modelers report sizes in kilometers or else convert to H
magnitudes after noting the albedo assumed.

With the data in a uniform framework it is now possible to
compare whether the size (or rather, H magnitude) distribution

Table 2
Detection Probability for DES Objects with Secure Classifications

Object Classa a e i H md Rd Prob.b Fitc

(AU) (deg) (VR) (AU)

2001 QR322 1:1 30.38 0.0297 1.3438 7.42 21.1 29.654 0.26

2001 FQ185 2:1 47.471 0.2258 2.2422 7.01 23.2 36.985 0.00016
2003 FE128 2:1 47.714 0.2487 3.2774 6.17 21.5 36.019 0.019
2001 UP18 2:1 48.008 0.0702 0.43497 5.71 22.5 50.271 0.061
2000 QL251 2:1 48.043 0.2192 4.7652 6.54 22.2 38.211 0.011
. . .

Notes.
a Centaurs with aNep < a < 80 AU were grouped with Scattered objects for fits and plots throughout this paper.
b Probability of detecting object with listed parameters and randomized ecliptic longitude.
c Object used to derive fits. Centaur and Classical objects were used to derive CDF fits, and Classical, 3:2, and
Scattered classes were used for maximum likelihood fits.

(This table is available in its entirety in machine-readable and Virtual Observatory (VO) forms in the online
journal. A portion is shown here for guidance regarding its form and content.)
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is the same across different dynamical classes. The implications
of differences for the objects’ collisional histories is discussed
in Section 6.

4.2.1. Exponential Fits from Probability-weighted CDF

Only classes with a relatively large number of objects can
use the ML method above to find distribution functions for all
parameters. However, even classes with as few as five objects
can be fit for an H magnitude distribution. A simple method
to estimate the number of objects in a class is to convert
the probability of detection into a predicted number of actual
objects. A probability-weighted cumulative distribution of the
estimated number of objects, N, brighter than a particular H
magnitude, where there are No observed objects, is calculated
by summing the inverse of the detection probability, qdet:

N (�H ) =
No∑
j=1

1

qdet,j
. (30)

For a given class x and some normalization scale Cx, the
cumulative distribution function (CDF) can be fit with an
exponential function of the form

Nx(�H ) = Cx10αxH . (31)

A single exponent α has been shown to break down when
the range of H magnitudes is large enough (Jewitt et al. 1998;
Gladman et al. 2001; Bernstein et al. 2004; Fuentes & Holman
2008; Fraser & Kavelaars 2008; Shankman et al. 2013). This
is evident in a turnover to a shallower slope, and can be
mathematically described by introducing two slopes, α1 brighter
than a certain H magnitude, referred to as the break, Hb, and α2
for fainter objects:

Nx(�H ) =
{
Cx10α1H H � Hb

Cx10α1Hb 10α2(H−Hb) Hb < H
. (32)

A plot of the probability-weighted CDF for each class is
shown in Figure 1. We examined eight classes: Classical,
Scattered, Centaur, 2:1, 3:2, 5:2, 5:3, and 7:4. We required
that each class have No � 5 objects with md � 23, to avoid
problems with sparse sampling at faint magnitudes (note that
similar results are obtained using md � 23.5). Similarly, a few
objects in the Scattered class have such large semimajor axes
(hundreds of AU) that they distort any population fit due to
sparse sampling and much lower probabilities of discovery; all
objects with a > 80 AU are excluded from these analyses.

A single exponential cannot explain the full distribution of
objects. The location of the turnover to a shallower slope was
estimated by examining the most populous class, the Classical
objects. The single exponential fit with the lowest relative error
has a break in slope at H � 7.2. A similar break is observed
in the next two most populous classes, the 3:2 and Scattered
objects, though the location of the break is not as well defined
as in the Classical objects, since the 3:2 objects have more
scatter at both high- and low-H objects, and both the Scattered
and 3:2 have a likely coincidental lack of objects right around
the putative break point. The slope for objects with H < 7.2 is
α = 1.02 ± 0.01 from the Classical data; fits to several break
points from 6.4 to 7.4 are shown in Figure 2.

We note that break points are commonly seen at the faint
edge of observational data, although the observed slope after
the break varies by group. Fuentes & Holman (2008) observed

Table 3
CDF Fits to Power Law Slope

Parameter Value Fitted Range Derived From

α1 1.02 ± 0.01 4.8 � H � 7.2 Classical CDF
α2 0.42 ± 0.02 7.5 � H � 11. Centaur CDF

2:1 0.93 ± 0.17 5.7 � H � 7.1 5 objects
3:2 0.84 ± 0.03 5.6 � H � 7.4 31 objects
5:2 1.29 ± 0.23 6.7 � H � 7.4 6 objects
5:3 1.00 ± 0.12 6.8 � H � 7.5 4 objects
7:4 1.29 ± 0.09 6.1 � H � 8.2 10 objects
Classical 1.02 ± 0.01 4.8 � H � 7.2 122 objects
Scattered 1.05 ± 0.06 5.4 � H � 7.3 23 objects
Centaur 0.42 ± 0.02 7.5 � H � 11. 7 objects
Hot 0.90 ± 0.02 4.2 � H � 7.2 84 objects
Cold 1.32 ± 0.02 4.9 � H � 7.2 114 objects

objects spanning the break, which they placed at R = 24.3
with a slope of α1 = 0.7+0.2

−0.1 before and α2 = 0.3+0.2
−0.3 after.

This corresponds to a diameter of D = 118(p/0.05)−0.5 km
(where albedo p = 0.05), or an H magnitude of about 8.5.
The break seen in the DES exponential for Classical objects, at
H = 7.2, could thus perhaps be a limiting magnitude issue, if the
DES survey efficiency was being mis-estimated at the faintest,
most difficult to detect magnitudes. To test the hypothesis that
the limiting magnitude was causing an artificial turnover, we
tightened our discovery magnitude threshold from VR = 23 to
VR = 22.5. The same exponent was found, but the turnover in
the Classical population appeared at H � 6.7 instead.

However, recent work by Fraser et al. (2014) also finds break
points at a similarly low H, with their Cold population breaking
at Hb,Cold = 6.9+0.1

0.2 and the Hot population at Hb,Hot = 7.7+1.0
0.5

in r ′. Since their method is different (see Section 5.2) and
their data is independent from what is presented here, it lends
credence to the break point we have identified around Hb = 7.2
being real.

In addition, we have one population that clearly samples the
size distribution after the break in slope: the Centaurs. With
seven objects spanning a large range of H magnitudes after the
purported break (7.5 < H < 11), the Centaurs are well fit by
a single, shallower exponential, with α = 0.42 ± 0.2. (We note
that similar slopes can be fit to the few Classical and 3:2 objects
with H > 7.2, though the exact slopes are strongly subject to
the exact choice of the artificial break point and have a much
smaller lever arm spanning only 0.5–1 mag.)

Our proposed model for the size distribution of the Kuiper
Belt is to assume that brighter objects follow the Classical H
magnitude distribution for 5 � H � 7.2, and then shifts to a
shallower slope for smaller objects as derived from the Centaur
distribution. (There are hints in the 3:2 distribution that brighter
objects may follow a shallower slope, but we have very few
objects with H < 5, and none are Classical objects.) Combining
the bright slope fit to Classical objects with H � 7.2 with the
faint slope fit to Centaurs with H � 7.5, we can construct a
double exponent: α1 = 1.02 ± 0.01, α2 = 0.42 ± 0.02, and
Hb = 7.2 (see Table 3). Note that the exact location of the break
point may be an artifact of the limiting magnitudes of our fields,
as very few objects (especially Classical) were found fainter
than M > 23, and so our CDFs suffer from incompleteness.

We check the compatibility of each of the eight classes of
KBOs with this double exponent using a Kolmogorov–Smirnov
(K-S) test, with one additional variable: although the values
for α1, α2, and Hb are kept the same, the absolute number of
objects is allowed to vary. The reasoning behind this choice
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Figure 1. Cumulative distribution function by H magnitude. The dots show the probability-weighted number of each DES object (Equation (30)). The fit for the
Classical distribution (4.8 � H � 7.2) has αC = 1.02 ± 0.01. The solid blue line in each plot shows the Classical fit times a scale factor NX that varies by class. Three
independent fits are shown: a green dotted line for the Centaurs, which have a much shallower slope of αCen = 0.42 ± 0.02; and dark and light gray dotted lines for
the “Hot” and “Cold” classes of Fraser et al. (2014) that include objects of all dynamical classes (see Section 5.2). The dashed red lines show the power laws for each
class derived by CFEPS (Gladman et al. 2012; Petit et al. 2011), with values for α from 0.8 to 1.2. (Note that CFEPS did not provide a Centaur distribution, so the
Scattered distribution is shown.)

(A color version of this figure is available in the online journal.)

is that objects in a resonance may have the same overall
size distribution, but, due to varying efficiencies of resonance
capture, may differ in absolute abundance. At the 5% level,
all eight dynamical classes are compatible with this double
exponent. The scaling constants required in the region following
α1, relative to the number of Classical objects, NC = 1.6×10−4,
are as follows: NScattered = 1.33NC , N3:2 = 0.27NC , N2:1 =
0.19NC , N5:2 = 0.13NC , N7:4 = 0.03NC , and N5:3 = 0.03NC .

The Centaurs, which follow α2, have a different scale factor,
NCentaur = 0.02. In addition, the Hot and Cold populations are
also consistent on a K-S test with the Classical distribution, with
NHot = 2.56NC and NCold = 0.72NC . Visually, this agreement
can be seen in Figure 1, which shows the scaled Classical fit
with the data for each class.

We can estimate the total number of objects in each class
less than a particular H magnitude. Table 4 shows the estimated
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Figure 2. Determining the break point, using the Classical distribution. All objects brighter than the break point, Hb (dashed red line), are used to calculated the fit
(solid line). The slope with the lowest error has Hb = 7.2.

(A color version of this figure is available in the online journal.)

Table 4
Estimated Number of Objects Less than H

�H Classical Scattered 3:2 2:1 5:2 7:4 5:3 Centaur

(1) α1 = 1.02, Hb = 7.2, α2 = 0.42, NC = 1.6 × 10−4 (2) αCen = 0.42

NCen = 0.02

4 2 ± 0 2 ± 1 0 ± 1 0 ± 0 0 ± 0 0 ± 0 0 ± 0 1 ± 0
5 19 ± 2 26 ± 2 5 ± 1 4 ± 0 2 ± 1 1 ± 0 1 ± 0 2 ± 0
6 200 ± 30 270 ± 30 54 ± 7 38 ± 5 26 ± 3 7 ± 0 6 ± 0 5 ± 2
7 2100 ± 300 2800 ± 400 570 ± 80 400 ± 50 270 ± 40 69 ± 9 60 ± 8 13 ± 5
7.2 3400 ± 500 4500 ± 600 910 ± 90 640 ± 90 440 ± 60 110 ± 20 95 ± 15 16 ± 6
7.5 4500 ± 700 6000 ± 900 1200 ± 200 850 ± 130 580 ± 100 150 ± 20 130 ± 20 21 ± 9
8 7300 ± 1300 9600 ± 1400 2000 ± 300 1400 ± 200 940 ± 160 240 ± 40 200 ± 40 35 ± 15
9 19000 ± 5000 25000 ± 6000 5100 ± 1200 3600 ± 800 2500 ± 600 620 ± 150 530 ± 130 90 ± 50
10 49000 ± 15000 66000 ± 19000 13000 ± 4000 9300 ± 2700 6400 ± 1900 1600 ± 500 1400 ± 400 240 ± 130

Scale 1.0 1.33 0.27 0.19 0.13 0.03 0.03 NA

total number of objects in each class from H = 4–9, using
two models: (1) a scaled broken exponential with Hb = 7.2
for all dynamic classes except the Centaurs, and (2) a single
exponential for the Centaurs. The errors are calculated by
taking the difference between the nominal number and the
numbers derived from the ±1σ errors. Note that the Centaurs
are estimated using their own independent fit and errors.

4.2.2. Estimating Class Distribution Parameters

For those objects with more members, we can more fully
characterize the class properties. This approach uses an ML
method to model the distribution functions for the parameters
(a, e, i, and H) that define the class. These distributions are then
used to calculate the detected fraction, f, from Equation (26), to
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Figure 3. Maximum likelihood fit to 122 Classical objects with md � 23, and H � 7.2. The filled histogram shows the observed distribution, while the dashed
histogram shows the amount by which the distribution is adjusted to account for discovery probabilities. The black lines show the best maximum likelihood fit to each
parameter.

(A color version of this figure is available in the online journal.)

find the total number of objects within our parameter range. A
downside to ML is that more objects are needed in a class to
fully characterize the four-dimensional parameter space. Only
the Classical, Scattered, and 3:2 classes have sufficient objects
to attempt an ML fit, and the Scattered fit is marginal. This is
why we recommend using the values derived from the CDFs in
Section 4.2.1 for comparison between many classes of objects.

We used somewhat expanded subsets of objects for the
Scattered and 3:2 classes compared to the CDF analysis. For the
ML analyses, a well-sampled parameter space is important, and
we examined cutoffs for H magnitude from H = 6.5–8.5. For
Classical objects, setting the break point between H = 6.7–7.2
does not substantially change the fitted value for α (e.g.,
αH�6.7 = 1.05 ± 0.12), but including fainter objects does
(αH�7.5 = 0.60 ± 0.07). The distributions for a, e, and i,
however, are resilient to the choice of Hb. Choosing a lower
(brighter) cutoff means decreasing the sample size, and since
there were few enough objects to start with, the cutoff was set
at H = 7.5 for the Scattered and 3:2 classes, while Classical
objects use the previously determined CDF cutoff of H = 7.2.

For all three classes we chose to model the a, e, and i dis-
tributions using a single Lorentzian (Equation (16)), following
the preference for Lorentzians over Gaussians of E05 and G10.
The Classical inclination distribution is also well fit by a double
Gaussian (as in G10), but since the resulting distributions are
not meaningfully different, the simpler model is preferred in this
work. (Note: whether a single or double Gaussian is preferred
depends critically on the exact classification scheme used. Four
high-inclination objects that were deemed Classical objects in
Gulbis et al. (2010) are classified as Scattered-Extended ob-
jects in this work, and that appears to explain why the double-
Gaussian fit is not required here. Choice of classification scheme
matters, particularly when comparing results!) The distributions
and histograms of the biased and de-biased detections are shown
in Figures 3 (Classical), 4 (3:2), and 5 (Scattered).

We list the best fit values for the Classical, 3:2, and Scattered
distributions in Table 5. The values for α agree within their
errors with the slopes found for the Classical objects in the CDF
analysis. The distributions were normalized over the observed

Table 5
Maximum Likelihood Fitted Distribution Parametersa

Param Classicalb 3:2c Scatteredd

α 1.01 ± 0.07 0.95 ± 0.16 1.04 ± 0.19
ao 43.94 ± 0.09 39.36 ± 0.05 45.87 ± 0.24
as 0.61 ± 0.09 0.2 ± 0.07 0.67 ± 0.28
eo 0.06 ± 0.01 0.24 ± 0.01 0.18 ± 0.01
es 0.05 ± 0.01 0.03 ± 0.01 0.01 ± 0.004
io 1.78 ± 0.1612 14.37 ± 1.52 21.99 ± 0.77
is 1.31 ± 0.24 4.14 ± 1.68 1.69 ± 0.56
H � 7.0 (2800) (840) (3100)
H � 7.2 4500 ± 400 (1300) (5000)
H � 7.5 (9000) 2500 ± 450 10000 ± 2100

Notes.
a Parentheses indicate derived quantities.
b Objects fit: quality 3, md � 23, and H � 7.2.
c Objects fit: quality 3, md � 23, and 5 � H � 7.5.
d Objects fit: quality 3, md � 23, and H � 7.5.

range of parameters for a and H,9 and from 0 � e � 0.95
and 0 � i � 170◦ (the full range has been truncated to avoid
numerical errors near boundaries). We note that the spread in the
eccentricity distribution for the Scattered objects is artificially
narrow due to a small number of low-probability objects at
e = 0.18 (an effect that would presumably go away with more
objects).

Using the calculated distribution functions, we evaluate
Equation (26) along a grid of 4–7 points each in a–e–i–H space to
find the detected fraction, f. The grid was constructed assuming
that each grid object was discovered at its median distance from
the Sun (i.e., half its time is spent closer to the Sun, and half its
time is further out) and with a hypothetical discovery magnitude
at that distance calculated using:

md = H + 5 log10(Rd/1) + 5 log10(Rd − 1/1). (33)

9 Minimum/maximum values for Classical objects: 37.2 � a � 50.3 AU and
4.7 � H � 7.2; Scattered objects: 32.5 � a � 68.1 AU and 5.3 � H � 7.3;
3:2 objects: 39 � a � 40 AU and 4.7 � H � 7.4.

11



The Astronomical Journal, 148:55 (17pp), 2014 September Adams et al.

39.0 39.2 39.4 39.6 39.8 40.0
0.0

0.5

1.0

1.5

2.0

2.5

3:2 a AU

0.10 0.15 0.20 0.25 0.30
0
2
4
6
8

10
12

3:2 e

0 5 10 15 20
0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14

3:2 i deg

6.0 6.5 7.0 7.5
0.0

0.5

1.0

1.5

2.0

3:2 H mag

Figure 4. Maximum likelihood fit to 32 3:2 objects with md � 23, and 5 � H � 7.5. The filled histogram shows the observed distribution, while the dashed histogram
shows the amount by which the distribution is adjusted to account for discovery probabilities. The black lines show the best maximum likelihood fit to each parameter.

(A color version of this figure is available in the online journal.)
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Figure 5. Maximum likelihood fit to 24 Scattered objects with md � 23, and H � 7.5. The filled histogram shows the observed distribution, while the dashed
histogram shows the amount by which the distribution is adjusted to account for discovery probabilities. The black lines show the best maximum likelihood fit to each
parameter.

(A color version of this figure is available in the online journal.)

For the Classical objects, the fraction of total objects detected
fClassical = 0.027 for H � 7.2. The detected fraction of
3:2 objects is half as big, f3:2 = 0.012, while the fraction of
Scattered objects detected is ten times smaller, with fScattered =
0.0023 (both for H � 7.5).

Note that the assumed discovery distance in the grid has
an effect on the fraction calculated. If we instead assumed
that objects were always found at perihelion, instead of at the
median distance, the detected fractions for the Scattered and
3:2 objects are eight times smaller. In the DES data, Classical
objects were found, on average (median), close to the median
distance (+1.6 AU from perihelion, and −0.6 AU from the
median distance), while the 3:2 (+3.5 AU from perihelion and
−4.3 AU from the median distance) and Scattered (+2.6 AU
from perihelion and −5.9 AU from the median distance) objects
were discovered somewhere in between. We chose to use the
median distance rather than the perihelion (or the average
distance of the discovered objects) to establish a minimum

number of objects per class, and to avoid having the values
of the grid depend on the properties of the objects found.

The corresponding total number of objects (from maximizing
Equation (28) for N ′

o) is found to be N<7.2 = 4500 ± 400
Classical objects, N<7.5 = 2500 ± 450 3:2 objects, and N<7.5 =
10,000 ± 2100 Scattered objects (Table 5). Compared to the
CDF fit values (Table 4), the ML method finds a larger total
number of objects for all classes. At H = 7.2, there are 10%
more Scattered, 30% more Classical, and 40% more 3:2 objects
in the ML estimate than in the CDF estimate.

5. COMPARISON TO OTHER OBSERVATIONS

5.1. CFEPS

Comparisons between the results of the two largest indepen-
dent surveys for KBOs, CFEPS and DES, need to keep in mind
three differences in observations and analysis.
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1. Differences in observational strategies. The specific strate-
gies used have been described in detail elsewhere
(Millis et al. 2002; Elliot et al. 2005; Petit et al. 2011;
Gladman et al. 2012), and may affect populations of ob-
served and recovered objects. For instance, one should note
that they used different filters (g′ for CFEPS and VR for
DES) and each cite results in H magnitudes relative to those
filters, although the offset between them is small, roughly
g′ − VR = 0.1 mag.

One area of potential concern relates to the recovery bias.
The DES found a much larger number of objects initially,
but due to limitations in telescope resources was unable
to track and classify all of them, resulting in a smaller
percentage recovered and classified compared to CFEPS.
The breakdown of which types of DES objects were lost
after initial discovery was reported in Elliot et al. (2005),
and lost objects tended to be fainter (requiring better follow-
up conditions) and faster-moving (allowing for less time to
recover an object before errors accumulated) than objects
that were successfully tracked. Future work will explore
how important the recovery bias is. We note that the advent
of all-sky surveys like LSST and Pan-STARRS will mean
that many of these objects will eventually be recovered and
linked back to the original observations (with high quality
orbits due to the long observational baselines), mitigating
any current recovery bias.

2. Differences in class definitions. Although mean-motion
resonances are straightforward to identify, the precise
meaning of a “Classical” or “Scattered” object can differ
significantly between groups. The properties of smaller
groups of objects can be particularly affected. The CFEPS
Scattering population (11 objects; Shankman et al. 2013)
draws members from what the DES would classify as
Scattered and Centaur groups, and as a result has a very
different H magnitude distribution than the DES Scattered
class. Also, as noted earlier, differences in definitions
result in high-inclination CFEPS Classical objects being
classified as DES Scattered objects. Special care should be
taken when comparing results between different groups and
models to make sure the same objects are being analyzed.

3. Differences in statistical approach. CFEPS follows a recur-
sive backward-modeling approach, making synthetic pop-
ulations of objects (drawn from distribution functions for
H–a–e–i as well as orbital longitude and libration ampli-
tude for resonant objects). These synthetic populations are
run through the CFEPS Survey Simulator to find which
ones would have been detected. The properties of the initial
distributions are adjusted until they match the recovered
populations.
By contrast, the main DES approach is a forward-modeling
method, where we calculate the biases of discovering each
object at a randomized point in its orbit, and turn that into a
discovery probability. Two methods are used to extrapolate
from individual probabilities to class populations. The
H magnitude CDF method has each known object stand
in for the (1/probability) objects that we didn’t find with
similar parameters. The ML method fits for distributions
of H-a-e-i, assuming functional forms such as exponentials
or Lorentzians, for each class. Although the ML method
results in larger absolute numbers, it produces results
consistent with the CDF fits at the 1–2σ level. Given
the inability to use the ML method for most dynamical

classes, we use the CDF results to compare with the size
distributions found by other groups.

Despite the differences noted above, the CFEPS and DES
results do agree on the slopes for most classes. CFEPS has
carved the main belt into several sections (“hot,” “stirred,”
and “kernel”), with slopes of 0.8, 1.2, and 1.2, respectively
(Petit et al. 2011); when combined together, as in Figure 1,
the overall CFEPS distribution is similar in slope to the DES
Classical slope αC = 1.02 ± 0.01 (CDF method), with similar
absolute numbers as well. (The “hot” and “stirred”/“kernel”
slopes, meanwhile, are consistent with the results when the full
DES sample is divided into “Hot” and “Cold” populations; see
Section 5.2.)

The absolute numbers of CFEPS objects are generally the
same order of magnitude as the DES results, but not entirely
consistent, with CFEPS generally citing lower abundances.
After accounting for the slight differences between results
quoted in Hg (Petit et al. 2011) and Gladman et al. (2012)
and HVR (this work), we find that the CFEPS Classical objects
must be scaled upward by a factor of 1.7 to be consistent with
the absolute number of DES objects (at the 5% level using
a K-S test), while the 3:2 objects require a factor of 1.5. By
contrast, the CFEPS Scattered objects are low by a factor of
14, although this discrepancy probably has more to do with
the different definitions of “Scattered”/“Scattering.” The other,
smaller resonant classes (2:1, 7:4, 5:2, and 5:3), which have few
objects in either survey (and hence higher uncertainty) are all
consistent without any rescaling.

The ratios between classes also differ between the DES and
CFEPS. Even ignoring the problematically defined Scattered
classes, the ratio of 3:2 to Classical objects is nearly 4 for
the DES but around 6 for CFEPS. The ratio for 2:1 objects,
meanwhile, is either a factor of 5 (DES) or 21 (CFEPS).
The 5:2 abundances, on the other hand, are approximately
the same in both surveys (seven times as many Classicals as
5:2s). Since resonance ratios are used to distinguish between
planet formation scenarios, future work is need to resolve these
discrepancies.

5.2. Hot and Cold Classical Populations

There are many ways of subdividing populations of KBOs,
and one long-standing division has been to divide the Classical
belt between “Hot” and “Cold” objects, based on the orbital
inclinations. We have noted before that the precise choice of
class definition strongly impacts the values derived: for instance,
several of the highest-inclination Classical objects in previous
work (e.g., Gulbis et al. 2010) have been classified here as
Scattered objects, removing the need for a double Gaussian
(or “Hot Classical” population) inclination distribution. It is
useful therefore to make comparisons wherever possible using
the same classification scheme.

The definitions of “Hot” and “Cold” classes of Fraser et al.
(2014) for all objects (not just Classicals) have simple in-
clination and distance cuts as follows: 38 � R � 48 and
i < 5 are “Cold,” while those from 30 � R � 150 and
5 < i < 90 are “Hot.” We examined the DES sample using the
same criteria (plus our restrictions to objects with M � 23 and
a � 80 AU) and found that the best-fit slopes (H � 7.2) were
αHot = 0.90±0.02 and αCold = 1.32±0.02. Despite using com-
pletely different objects and de-biasing methods, these numbers
are very similar to Fraser’s values: αHot,Fraser = 0.87+0.07

−0.2 with
a break at H = 7.7+1.0

−0.5, and αCold,Fraser = 1.5+0.4
−0.2 with a break
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at H = 6.9+0.1
−0.2 (Fraser et al. 2014). The value after the break

point for Fraser’s Cold population (which is better constrained
than the faint Hot population), is α2,Fraser = 0.38+0.05

−0.09, entirely
consistent with our Centaur slope estimate of α = 0.42 ± 0.02.

5.3. Rare and Very Distant Objects

The lowest calculated probabilities fall into two general
categories: objects with discovery magnitudes well below our
average detection efficiency, and very distant objects. Seven
of the ten most improbable objects found by the DES have
Mdisc � 24, and the remaining three have a � 200. We have
already noted that our current analysis is restricted to objects
brighter than Mdisc = 23 (future work using the magnitude
recalibration may be able to extend that limit to fainter objects).
We have also excluded the most distant objects (a � 80 AU)
after finding that a few objects widely scattered in semimajor-
axis space leads to huge distortions in the distributions derived
for all parameters. Only nine objects that otherwise met our
selection criteria (md � 23 and quality 3 orbits) were excluded,
with 82 � a � 653 AU and classifications of Scattered-Near,
Scattered-Extended, or Centaur. The CFEPS sample also has
few objects in this range, with two scattering objects (2005
RH52 and 2003 HB57) around 150 AU (Petit et al. 2011) and one
(2003 YQ179) reported in a 5:1 resonance at 88 AU.

The lowest detection probability for any object is 10−7 for
2001FU185, a very faint Scattered object (Mdisc = 25.3). The
lowest probability with Mdisc � 23 is 10−5 for 87269, an
extremely eccentric Centaur with a = 653 AU and e = 0.97.
There are likely thousands of similarly far-flung objects, which
are only detectable during a small fraction of their orbit, but
characterizing their distribution parameters will require a larger
sample and is beyond the scope of this work.

6. COMPARISON TO THEORY

As Neptune migrated outward during the early history of the
solar system, it sculpted the primordial population of objects in
the disc around and beyond its orbit, including pushing captured
objects out into mean-motion resonances. In principle, we can
use the relative number of objects in different dynamical classes
to distinguish between models for how Neptune migrated,
because objects in different orbits are captured with varying
efficiency. Using the de-biased detection results of the previous
sections, the DES finds, for instance, that there are about
0.7 times as many 2:1 objects as 3:2 objects (out to the break
in the size distribution at Hb = 7.2), and 1.3 times as many
Scattered as Classical objects. We now examine recent models
of planet formation and see how they compare to the DES class
populations.

6.1. Smooth Migration

The existence of objects in mean-motion resonances is ev-
idence that Neptune migrated outward from where it formed
(Malhotra 1993). Many early numerical simulations (e.g., Hahn
& Malhotra 2005) made the assumption that this outward
migration happened more or less smoothly, with the giant plan-
ets maintaining generally low eccentricity, and that the popula-
tion of objects that Neptune migrated through was dynamically
“cold” (low e and i). However, when such models attempted
to reproduce the observed structure of the Kuiper Belt, they
had difficulties explaining the observed eccentricity and incli-
nation distributions. For instance, a pre-existing dynamically

“hot” (〈e = 0.1〉) disc allows for more efficient resonance cap-
ture into higher-order resonances, and Hahn & Malhotra (2005)
found that objects would be expected in many “exotic” reso-
nances that the DES has in fact found objects in, including the
5:2, 9:4, 7:3, 11:6, 12:5, 3:1, 7:2, and 4:1 (Table 1).

However, even with an initially excited disc, problems remain
with smooth migration models. If the resonances were swept
out of a Hot Classical disc, the inclination distribution of the
3:2 resonance should resemble that of the Classical population
it formed from, and this is not the case (compare Figures 3
and 4). Instead, the 3:2 inclination distribution is much closer
to the Scattered inclination distribution (Figure 5), indicating a
different formation model (see Section 6.2). The smooth model
is similarly argued against by the similarity in colors of the 3:2
and Scattered, but not Classical, populations (Sheppard 2012).

Comparing absolute numbers of objects, we find that the
smooth migration model of Hahn & Malhotra (2005) overes-
timates the number of Classical objects by a factor of seven
(130,000 predicted H � 9, compared to the DES estimate of
19,000), and finds the opposite ratios of 3:2 and 2:1 objects
(twice as many 2:1, whereas we find 0.7 times as many) and
Classical to Scattered (five times as many Classical, whereas we
find 30% more Scattered). Other problems noted with smooth
migration include the inability to explain objects with i > 15◦
or to populate the extended scattered disc (perihelia beyond
40 AU), where objects such as Sedna and several DES objects
have been found. For all of these reasons, smooth migration
cannot fully explain the evolution of the outer solar system.

6.2. Chaotic Capture

Current evidence suggests that the early history of the solar
system was much more chaotic than previously thought, as
proposed and later refined in a series of papers collectively
referred to as the “Nice Model” (Gomes et al. 2005; Tsiganis
et al. 2005). In its current incarnation (Morbidelli & Crida
2007; Levison et al. 2011; Nesvorný & Morbidelli 2012), the
model posits that a number of giant planets (up to six) were
originally configured so that Jupiter and Saturn were near a
major resonance, likely a mutual 3:2 resonance, and dramatic
changes in planetary orbits ensued when the resonance was
crossed. In simulations with more than four giants, one or two
planets similar to Uranus or Neptune were ejected from the early
solar system; a major resonance crossing has also been invoked
to explain the late heavy bombardment of the inner solar system.
All of these events left a dramatic mark on the Kuiper Belt.

In general, the Nice Model has been much more successful
than previous attempts at explaining Kuiper Belt structure.
Regardless of precisely how objects are partitioned between
Classical and Scattered designations, there exists a bi-modal
inclination distribution (Gulbis et al. 2010) which the Nice
Model can reproduce. Additionally, the Nice Model predicted
that some of the primordial population of objects was captured to
make up Jupiter’s Trojan population at the same time as the giant
planets were sculpting the resonant and scattered populations
of the Kuiper Belt (Morbidelli et al. 2005; Nesvorný et al.
2013), although observations at the time seemed to contradict the
prediction that such objects would have similar size distribution
slopes. A recent reanalysis of the Trojan size distribution by
Fraser et al. (2014) has found that, in fact, the Trojan population
has a similar two-slope fit to that work’s results for the Hot
population (α1,Trojan = 1.0 ± 0.2, α2,Trojan = 0.36 ± 0.01, and
Hb,Trojan = 8.4+0.2

−0.1), which are also in agreement with this work
(except for some difference in the break point, which is likely

14



The Astronomical Journal, 148:55 (17pp), 2014 September Adams et al.

due in part to H magnitude conversions and differing average
albedos).

Nonetheless, some important details still need to be worked
out. As noted in Levison et al. (2008), the observed 3:2 dis-
tribution had higher eccentricities than the simulations could
produce; as seen in Figure 4, the debiased eccentricity distri-
bution is even more highly eccentric. The simulations also pro-
duced a Classical distribution that was too eccentric, although
it has been noted by Batygin et al. (2011) that this may be less
due to a failure of the model and more to the assumption that
the space Neptune was pushing objects out into was previously
unpopulated. Parker & Kavelaars (2010) find that a separate,
primordial Cold population is also supported by the high wide
binary fraction, which is too large for the mechanism of Levison
et al. (2008).

Another interesting feature is that Cold Classical objects
(defined by inclination) are less eccentric than the stability
limit requires (Dawson & Murray-Clay 2012). For the least-
excited (i < 2◦) objects, there is a “wedge” in e−i space
where no objects exist despite orbits being stable in that regime.
Morbidelli et al. (2014) identified the area as just inside the 7:4
mean motion resonance. The wedge has been argued to support
either a primordial cold belt of objects (Dawson & Murray-
Clay 2012), or to be a natural result of resonance interactions
during smooth migration at the tail end of Neptune’s outward
journey (Morbidelli et al. 2014). Clear evidence of this wedge is
seen in the DES Classical objects in the same region (between
the 5:3 and 7:4 mean motion resonances), where there are 43
objects. We can do CDF and ML fits as above, and find that
the CDF slope of the population just inside the 7:4 resonance
(42.3 � a � 43.6) agrees with the full Cold population,
with αinside7:4 = 1.25 ± 0.03, which is not surprising given
the ML fit to the inclinations (io = 1.7, is = 1.7), while the
eccentricities are indeed well below the stability limit of e = 0.1
(eo = 0.043, es = 0.012). (We note that we find 10%–15% as
many 7:4 as Classical objects in this region, or about half what
the non-debiased results and model simulations of Morbidelli
et al. (2014) both found; the difference is probably due to the
slightly further distance, which adds 0.2 mag, as well as to the
higher inclinations and eccentricities of 7:4 objects, all of which
slightly bias against discovery even of this relatively close class.)

As more detailed model predictions of fine regions of phase
space are made, it will become increasingly necessary that (1)
all parties involved are using the same dynamical definitions,
and (2) that observers make debiased data available and that
modelers compare to debiased data wherever possible.

6.3. Location of the Power Law Break

There has long been evidence that the size distribution of
KBOs cannot follow a single power law. A break in the size
distribution power law has been proposed for objects smaller
than about 100 km diameter (Gladman et al. 2001; Bernstein
et al. 2004; Kenyon & Bromley 2004), although the exact
location varies by model. Destructive collisions have been
evoked to explain the existence of a break at roughly the same
size (e.g., 40 km; Pan & Sari 2005). The exact location of the
size break, however, has not yet been observed because of the
faint magnitudes of objects in this size regime: 100 km with an
albedo of 0.05 roughly corresponds to H = 9.

Collisional evolution modeling by Fraser (2009) presented
theoretical support for a depletion region from D = 20–40 km,
with reduced collision rates for larger objects (D = 50–100 km),
allowing the steep power law from the brighter Kuiper Belt to
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Figure 6. H magnitude distribution of Centaurs, which are well fit by a single
power law with α2 = 0.42 ± 0.2 (dashed line). No evidence is found for the
divot reported by Shankman et al. (2013), based on 11 CFEPS Scattered objects
(solid line). (Note that the divot model has been scaled down by a factor of 20
from the absolute scale reported in Petit et al. 2011, to match the values plotted
in Shankman et al. 2013.)

(A color version of this figure is available in the online journal.)

continue until that point. A “divot” is expected in the power law
at around that point. Recently, there has been a claimed detection
of that “divot” around H = 9 (Shankman et al. 2013), based
on 11 Scattering objects discovered and de-biased by CFEPS
using their Survey Simulator. These objects range in brightness
from H = 7.1–10, with only two objects (L4k09 and L4v11)
fainter than the supposed “divot” point (H = 9.5 and H = 10.0,
respectively). The lack of additional objects is itself used as a
constraint on the steepness of the slope.

Collisional grinding has come under fire recently, however,
since it would have disrupted the many wide binaries found in
the outer solar system (Parker & Kavelaars 2012; Fraser et al.
2014). Fraser et al. (2014) has compiled detections up to H = 9
and finds a much shallower turn-over at H ∼ 7, in line with
what we have found in this independent work. After accounting
for the albedo distribution, that paper concluded that the turn-
over diameter is at D = 136 km ± 8. The picture that has
emerged is of a Cold population (roughly the DES Classical
group) that formed in situ around 40 AU, while the hot objects
(DES Scattered plus resonances) formed around 15–35 AU and
were scattered outward. The cold belt cannot have endured
order-of-magnitude collisional evolution, and must have always
had a surface density similar to the current density, while that
of the hot objects must have been 105 times greater. These
five orders of magnitudes imply a growth time rate that is
105 times slower in the outer solar system, and this creates
intractable problems for object formation time scales and the
development of a broken size distribution (Fraser et al. 2014).
Another theoretical explanation for the existence of a break is
required.

Locating the break observationally also is challenging. Most
observations do not have numerous objects on both sides,
although meta-analyses such as Fraser et al. (2014) do a good job
of pulling together disparate observations. The only DES class
with objects fainter than about H = 8.5 is the Centaurs, which
approach closer than Neptune and are consequently often much
brighter at discovery. Although Centaurs are now located inside
the inner edge of the Kuiper Belt, they are thought to be the
transitional stage between the scattered disc and Jupiter family
comets (JFCs). This is supported by both dynamical evolution
calculations (Levison & Duncan 1997; Tiscareno & Malhotra
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2003) and the similarity of the Centaur inclination distribution
(Gulbis et al. 2010) to both the Scattered objects and JFCs (and
not to the main Kuiper Belt or resonant objects).

The slope observed for the Centaur objects, α2 = 0.42 ± 0.02,
is consistent with other populations of small objects reported in
the literature, such as the JFCs (α = 0.49 ± 0.05; Solontoi et al.
2012). It is also the same power law as the faint end of the Jupiter
Trojans as measured by Solontoi et al. (2012; α = 0.44 ± 0.05)
and Fraser et al. (2014; α2,Trojan = 0.36 ± 0.01). With seven DES
objects between H = 7.5–11 and md � 23, we see no sign of
the purported “divot” of Shankman et al. (2013), which most of
our objects are fainter than (Figure 6). No sign of turnover is
seen out to H = 11 (D = 40 km assuming albedo = 0.05).

7. CONCLUSIONS

The Kuiper Belt contains a record of outer solar system
history, and de-biased observations of different classes of objects
are a powerful tool to understanding it. The DES is the largest
uniform survey to weigh in on the dynamical statistics. Here we
have presented an analysis of a data set of 304 objects, as well
as a new method for accounting for discovery biases.

We have calculated the detection probability for 304 objects
with secure orbital classifications, accounting for biases related
to the object semimajor axis, eccentricity, inclination, discovery
magnitude, discovery distance, and absolute magnitude. Using
these probabilities, we have estimated the size distribution for
246 objects in eight classes with at least five objects each,
using H magnitude as an observable proxy for object diameter.
A double power law is required to explain the data, with the
population of Classical objects used to derive the main power
law slope, α1, and the intrinsically fainter Centaur population is
used to derive the slope after the break point, α2. This power law
is consistent with all eight classes that have sufficient objects.
The parameters of this power law are α1 = 1.02 ± 0.01 for
H � 7.2 and α2 = 0.42 ± 0.02 for fainter objects.

We note that this power law also appears to break down at the
very brightest, and largest, objects (H < 5), as is seen in the
3:2 distribution. This may be due to small number statistics in
the objects detected, the stochastic nature of a few large-body
collisions, or a change in the underlying mechanisms that govern
the formation of large objects.

We have also estimated the total number of objects in the
Kuiper Belt up to a particular size. Two different methods were
used, a max-likelihood estimation that determined distribution
functions for four quantities (a, e, i,H ) and a CDF based
directly on inverted probabilities that only determined the H
magnitude distribution. For comparison between classes, we
prefer the CDF results, which were possible on eight classes
(there were too few objects to use the max-likelihood approach
for the other classes). We note that the ratios between the classes
are similar in the max-likelihood analysis, although the overall
abundances of objects are 1.5–2 times larger. We adopt the CDF
results, and find the number of objects with H � 7 for eight
classes: Classical (2100±300 objects), Scattered (2800±400),
3:2 (570 ± 80), 2:1 (400 ± 50), 5:2 (270 ± 40), 7:4 (69 ± 9), 5:3
(60 ± 8), and Centaurs (13 ± 5).

Finally, we can compare our data to other reported observa-
tions and model predictions. The absolute number and power
law slope agree with results presented by the other major Kuiper
Belt survey, CFEPS, for the Classical objects. Some additional
classes of objects (such as the 5:3 and 7:4 resonances) also agree.
Others, notably the 3:2 resonance, differ in absolute numbers
by a factor of four. We also find no evidence for the divot re-

ported in the Scattered population by Shankman et al. (2013).
These discrepancies in the details illustrate the value of having
two completely independent data sets and analyses methods to
determine the number of objects in the Kuiper Belt.

Dividing our sample according to the “Hot” and “Cold”
criteria of Fraser et al. (2014), we find excellent agreement in
the reported breaks and slopes. The evidence of that work and
this strongly points toward a brighter turn-over, around H = 7,
than previously theorized. We would also like to reiterate the
importance of comparing like to like, both in terms of dynamical
class definitions and in terms of comparing observations to
model results.

In anticipation of large all-sky surveys such as LSST and Pan-
STARRS, we are making this de-biasing code available10 so that
the discovery probabilities of objects found by any survey with
the same characterizations can be calculated. We anticipate this
will be a useful complement to tools such as the CFEPS Survey
Simulator for determining the structure of the Kuiper Belt.
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Nesvorný, D., & Morbidelli, A. 2012, AJ, 144, 117
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