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1. Introduction

This paper is the continuation of our work about the population of asteroids in the Hecuba gap.
In our previous paper (Roig et al. 2001), hereinafter RNF-I, we studied the dynamical characteristics
of the real asteroids in the 2:1 resonance with Jupiter. We identified 61 resonant asteroids known
at April 2001, both numbered and unnumbered multi-oppositional, and divided them in three sub-
populations: (i) stable objects, that are able to survive in the resonance for more than 500 Myr,
(ii) marginally unstable, with typical lifetimes between 100 and 500 Myr, and (iii) unstable objects,
with lifetimes smaller than 100 Myr (in most cases much smaller). The main members of the
stable and marginally unstable populations are the asteroids (3789) Zhongguo and (11362) Griqua,
respectively. Then, throughout this paper we will usually refer to these two populations simply as
“the Zhongguos” and “the Griquas”.

In RNF-I we have shown that the Zhongguos are about 30 asteroids located in the most stable
region inside the 2:1 resonance, where they would be able to survive over the age of the Solar
System. We have also discussed the role of Yarkovsky effect and of mutual scattering in enhancing
the chaotic diffusion in this region, concluding that these processes do not affect significantly the
long term stability of the Zhongguos. Then, the open problem is to determine if these objects
have actually been in the resonance from the very primordial times, or if they arrived to their
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present location in more recent times. As we discussed in RNF-I, the main argument against the
primordiality of these resonant asteroids in the resonance is their steep size distribution and their
rather small sizes (less than 20 km in diameter).

We have also shown in RNF-I that there is a possible dynamical link between the Griquas and
the Zhongguos, supported by the natural chaotic diffusion in the resonant phase space. Concerning
the unstable population, their members lie in the most unstable regions of the resonance, and we
concluded that such asteroids should be continuously resupplied from outside the resonance in order
to keep the population in steady state, as we presently observe it.

However, in RNF-I we did not do a detailed analysis and discussion of the specific mechanisms
that could “inject” asteroids in the resonance, both in stable or unstable regions. The aim of this
paper is to complete this analysis, presenting the main outlines of the most interesting alternatives.
We do not intend to draw definitive conclusions about the origin of the resonant asteroids in the
Hecuba gap, but rather to provide the necessary evidence that could allow to either support or
discard any of these alternatives.

The mechanisms we will study here are basically three: (i) dynamical diffusion at the left side
of the Hecuba gap (Sect. 2), (ii) resonant capture due to planetary migration (Sect. 3), and (iii)
breakup of Themis and formation of Themis family (Sect. 4). In Sect. 2, we will also discuss the role
of different sources of diffusion, like weak mean motion resonances, Yarkovsky effect, and mutual
scattering. Most of the definitions and techniques applied in this section were already described in
detail in RNF-I, and we will avoid to repeat their description here. Then, we will frequently refer
the reader to that paper. Finally, Sect. 5 is devoted to the conclusions.

2. Diffusion in the neighborhood of the Hecuba gap

If we are looking for a reservoir of asteroids able to supply or resupply the population of resonant
objects at the 2:1 resonance, then we have to look first at the left side of the resonance. The large
density of background asteroids observed there is even enhanced by the presence of Themis family,
which accounts for some 2000 asteroids. Moreover, the asteroidal density in the region shows a
clear cutoff at the border of the 2:1 resonance, which means that a lot of asteroids lie very close to
the separatrix and could be able to be injected somehow in the resonance. We will discuss in the
following, how could this injection be favored by the chaotic diffusion at the left side of the Hecuba

gap.

The first step was to mount a map of the diffusive structure near the separatrix of the 2:1
resonance. This map is shown in Fig. 1. The darker areas correspond to regions where the motion
is very stable, while the lighter ones are associated to regions of strong chaos. The map was mounted
by integrating a grid of 10,000 particles, regularly distributed in the a, e space. The initial angles
were such that 0 =2 \j — 2\ —w =0, w — wy = 0 and Q — Q3 = 0, and the model considered
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perturbations of four major planets' . The chaoticity of each initial condition has been quantified
by counting the number of peaks in the 1 Myr FFT spectrum of the semi-major axis, and this
quantity was translated to a gray-scale.

This map of spectral numbers (Michtchenko and Ferraz-Mello, 2001) allowed to obtain a de-
tailed portrait of the phase space with a relatively low computational cost. Several features can be
appreciated in Fig. 1. At the upper right corner there is a huge region of chaos corresponding to
the 2:1 resonant space. The “spot ” of almost regularity in the middle of that region corresponds to
the place where the Zhongguos are located. The border of the resonance is also quite well defined.
Outside the resonance, we observe a complex web of weak mean motion resonances (MMRs), which
appear as inclined stripes of instability. Most of these are three-body MMRs (Nesvorny and Mor-
bidelli, 1998) involving the orbital periods of Jupiter and Saturn, and some of them are indicated at
the bottom of the plot. The dominant ones are the 5:-2:-2 and 7:-2:-3 resonances?. Other weaker
MMRs, as the stripes in each side of the 5:-2:-2 resonance, corresponds to combinations of the
three-body MMR itself with the frequency of the 5:2 Great Inequality between Jupiter and Saturn.
At high eccentricities (e > 0.3) several narrow MMRs overlap and generate the rather chaotic region
observed at the upper left corner of the plot.

The role of these weak resonances is to enhance the chaotic diffusion in the (otherwise stable)
neighborhood of the Hecuba gap. An asteroid captured in such resonances will randomly walk along
it, being able to excite its eccentricity. In the inner main belt, this mechanism has been proven
to be responsible of re-supplying the population of Mars-crossers (Morbidelli and Nesvorny, 1999),
and of enhancing the proper element’s dispersion of the Flora family (Nesvorny et al., 2001). An
interesting feature observed in Fig. 1 is that some weak MMRs touch the border of the 2:1 resonance
at a certain eccentricity. In the following, we will discuss whether or not these regions of contact
could behave as “gates”, allowing an asteroid captured in a narrow MMR to jump inside the 2:1
resonance after exciting its eccentricity.

2.1. Weak mean motion resonances

In order to analyze the efficiency of weak MMRs to inject asteroids in the 2:1 resonance,
we performed a simulation of 300 test particles and studied their chaotic diffusion in the proper
elements’ space. We used the symplectic integrator Swift (Levison and Duncan, 1994), with a time
step of 0.05 yr, and taking into account perturbation of four major planets. The simulation spanned
200 Myr. The initial conditions of the test particles were chosen as follows: the eccentricity was

! As usual, A\, w and € represent the mean, perihelion and node longitudes, respectively, and the index J refers to
Jupiter

2 A three-body resonance of the form k : —I : —m corresponds to a combination of frequencies kny —Ins —mna =~ 0,
where n refers to the mean motion of the bodies involved.
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Fig. 1.—— Map of spectral numbers (number of peaks in the FFT spectrum) for the left side of the
Hecuba gap. The darkest regions are the most stable. The gray-scale is truncated at 80 peaks.
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equally spaced in the range 0.05 < e < 0.4, Ae = 0.05; the semi-major axis was also equally spaced
in the range amin < @ < Gmax, Aa = 0.003 AU, where apin, Gmax depend on the initial eccentricity
and varied between 3.10-3.15 and 3.24-3.27 AU, respectively. The remaining elements were chosen
such that 0 =0, w — wy = 0, I = 5°, and 2 randomly distributed between 0 and 27w. We further
divided these initial condition into two sub-sets:

e Set #1 corresponds to 200 initial conditions started the simulation outside the 2:1 resonance.

e Set #2 corresponds to 100 initial conditions that were in the resonance from the very beginning
of the simulation (this was verified by looking at the average a and the behavior of o).

From the results of this simulation, we computed time series of the proper elements ay, ey, I
for each particle. For the particles of Set #1, proper elements were defined as the running averages
of a,e, I over 10 Myr, and were sampled every 0.1 Myr. For the particles of Set #2, we followed
the same procedure applied in RNF-I, and defined proper elements as the running minima of a and
maxima of e, I, also over 10 Myr with 0.1 Myr sampling. It is worth noting that this last definition
of proper elements (maxima/minima) can also be applied to the particles of Set #1. In such case,
the maximum of the eccentricity has a particular meaning, because it is associated to the condition
w —wy = 0. This latter set of proper elements are usually referred to as resonant proper elements,
because they better describe the position of the asteroids with respect to the separatrix of the 2:1
resonance (Morbidelli et al., 1995). Although for Set #1 the averages normally provide proper
elements of better quality, we will eventually use at times the maxima/minima to point out some
particular dynamical features.

The typical evolution of the particles of Set #1 in the space of proper elements is shown in Fig.
2. In this figure, we plot the averaged values of a and e (sampled every 0.1 Myr) for all particles
with initial conditions between 0.2 < e < 0.4. It is worth noting that the initial conditions are
related to a maximum of e, so the corresponding averaged eccentricities are shifted down by some
0.05. In Fig. 2 we also indicate the approximate location of some MMRs (vertical full lines), and
also the curves corresponding to three different values of the invariant

N:\/E(—2+\/1—62cosI) )

which is related to the 2:1 resonance (dashed lines marked Nj).

As we expected, the particles captured in MMRs show diffusive paths in e, along these reso-
nances. By far, the dominant resonance is 5:—2:-2. These particles also show a significant diffusion
in ap, although it is mostly limited to the width of each MMR. The diffusion in a, is mainly due
to the proper oscillations inside the MMRs and it is larger for larger e,, because the resonance
width increases with eccentricity. However, these proper oscillations have a superimposed forced
oscillation, which is induced by the proximity to the 2:1 resonance. This is clearly noted in Fig. 2,
where the diffusive paths in a, are always aligned with the lines of N = const. The particles that
are not captured in the narrow MMRs can be identified as the tiny dashes in Fig. 2, mainly at
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Fig. 2.— The evolution in the proper elements’ space of the test particles in Set #1. Only the
particles with initial e > 0.2 are shown. Proper elements are defined as averages over 10 Myr and
are sampled every 0.1 Myr. Note that the average eccentricity is shifted down about 0.05 with
respect to the initial eccentricity. The location of some MMRs resonance is indicated by full vertical
lines, trucated at the approximate border of the 2:1 resonance. Dashed lines correspond to values
of the invariant Eq. (1).
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ep = 0.15 and 0.20. No significant diffusion is observed in these cases, at least in the time scale of
our simulation.

But for our purposes, the most interesting feature observed in Fig. 2 concerns the particles
that went injected in the 2:1 resonance. We observe three clear examples at e, = 0.15, 0.25 and
0.30, respectively, but a larger number of injections occurred also at e, = 0.35. These injections
happened precisely at the “gates” mentioned above, where the weak MMRs touch the 2:1 resonance
border. In Fig. 3 we present the typical behavior of two of these injected particles: one of them had
initially e = 0.20 (upper panels) and the other e = 0.30 (lower panels). For the sake of comparison,
we also show in each case the behavior of a neighboring initial condition that was not injected during
the simulation (dotted curves). The first case correspond to a particle that started the simulation
inside the 13:-7:—5 resonance. The particle chaoticaly evolved there for about 100 Myr until it was
pushed to enter the 2:1 resonance. The second case is a particle that started the simulation at
the 7:—-2:-3 resonance. Even being a stronger resonance, the particle spent more than 100 Myr in
it before becoming thrown to the 2:1 resonance. This seems to indicate that the typical diffusion
in e, along the weak MMRs is not actually too large, and opens the question about the efficiency
of this mechanism to excite the eccentricities and inject asteroids in the 2:1 resonance. In fact,
the examples shown in Fig. 3 were quite lucky (or unlucky) particles, because they started the
simulation not only at a weak MMR but also very close to the 2:1 resonance border.

Back to Fig. 2, the apparently large diffusive paths observed at the 5:—2:-2 resonance, for
example between 0.15 < e, < 0.22, come in fact from the combined effect of two or more different
particles, some of them diffusing upwards from a lower e, while other diffusing downwards from a
higher e,. In spite of the quite enhanced diffusion at this resonance, it is difficult to imagine how
could a particle at e, ~ 0.15 (for example, a typical Themis family member) be able to excite its
eccentricity to much larger values in a time-scale shorter than the age of the Solar System. The
dynamics of Themis family members is of the upmost importance, because this family concentrates
a large fraction of the asteroidal population at the left side of the 2:1 resonance, and could be the
most important reservoir of potential 2:1 resonant objects.

To better quantify the actual diffusion induced by the narrow MMRs at the left side of the
Hecuba gap, we computed the diffusion parameters for each proper element, following the same
procedure described in RNF-I. In short, given a proper element E, we introduced two different
definitions for these parameters: the first one is simply the standard deviation og of the proper
element over a given time interval (do not mistake with the critical argument ¢); the second is the
slope Bg of the linear best-fit for the time series of the proper element. Figure 4 shows the values of
04,0¢,01 over 200 Myr, for the initial conditions of Set #1 with e < 0.3. We can see a correlation
between the three quantities, which is related to the evolution at weak MMRs. The initial conditions
with e = 0.4 were excluded from the plot because they evolve in a regime of overlap of MMRs, and
their behavior is totally different from that of the lower e particles, as we will discuss later.
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Fig. 3.— Two examples of the evolution of proper elements of particles injected in the 2:1 reso-
nance during our simulation (full lines), and neighboring particles not injected (dotted lines). The
upper panels correspond to initial conditions at e = 0.2 and the bottom ones, correspond to initial
conditions at e = 0.3. At variance with Fig. 2, the proper elements shown here are averages over 1
Myr.
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In Fig. 4 the large values of o correspond to particles captured in weak MMRs. For example,
particles at the 5:-2:—2 resonance with e, = 0.15 (typical Themis family members) have values of
oe ~ 0.005. This means that, in order to diffuse from their present location up to about e, ~ 0.3
(where they would have a good chance to be thrown to the 2:1 resonance), they would spend some
4-6 Byr. In other words, the narrow MMRs alone seem to be rather inefficient to transport asteroids
into the 2:1 resonance in time scales of millions of years, except when the asteroids lie close to the
border of the 2:1 resonance from the begining. In such cases, the role of the 9:-2:-4 and 13:-7:-5
resonances to inject members of Themis family in the 2:1 resonance could have some relevance which
should be studied with more detail (see Fig. 2).

On the other hand, the overlap of narrow MMRs at e, > 0.3 provides a totally different
mechanism to transport asteroids. Due to this overlap, the objects there are able to randomly walk
in semi-major axis, virtually jumping between the MMRs, and can be eventually pushed to enter
the 2:1 resonance in time scales as shorter as some Myr. These short time scales do not allow to
plot their trajectories in the proper elements space (recall that proper elements are averages over 10
Myr). Notwithstanding, about 80% of the initial conditions with e = 0.4 in Set #1 ended captured
at the 2:1 resonance (at least temporarily) in at most a couple of 10 Myr. We wish to stress that this
mobility of a, at large eccentricities is not related to Jupiter crossing orbits. In fact, the 2:1 resonance
induce a forced oscillation of e which reaches its maximum when w = wj, so this mechanism is
in some sense protecting the particles from having a close approach to Jupiter. Actually, Jupiter
crossing orbits at a ~ 3.15 AU will happen only for maximum values of e > 0.55, even taking
into account the 0.35 AU Hill’s sphere of that planet. The diffusion cannot be attributed to the
perturbation of Mars either, since this planet has not been included in the simulations. However,
Mars crossing orbits happen for e > 0.45, and this planet should be taken into account in future
studies of the dynamics at this high eccentricity region.

The overlap of weak MMRs seems to be a quite efficient way to inject large amounts of objects
in the 2:1 resonance in very short time scales. The problem is to find a suitable source of asteroids
to feed this mechanism. Unfortunately, the density of observed asteroids near the Hecuba gap has
a drastic decay for e > 0.30 (see for example, Knezevi¢ and Milani, 2001), and most of this high-e
asteroids are driven to planet crossing trajectories in time scales smaller than 100 Myr. Maybe the
weak MMRs in the neighborhood of the Hecuba gap could be able to feed the region of overlap, by
exciting the eccentricity of objects with an already high e (~ 0.3). However, even if this is the case,
we would need another mechanism to resupply the weak MMRs themselves. In recent years, the
role of non conservative forces (like Yarkovsky effect) and mutual scattering, has been raised as a
possible solution to feed the large web of weak MMRs in the asteroid belt, through the introduction
of a significant semi-major axis mobility of the asteroids. We will return to this subject later in
Sect. 2.3.

Before closing this section, we wish to recall that our present study has been restricted to the
very neighborhood of the 2:1 resonance, and to the dynamical effect of a few MMRs. We have not
analyzed the possible effect of two important two-body MMRs with Jupiter located in the interval
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3.05 < a < 3.12 AU, namely 11:5 (a ~ 3.07 AU) and 13:6 (¢ ~ 3.11 AU). Numerical experiments
by Michtchenko (in preparation) show that the diffusion at these resonances is much larger than
at the 5:—2:-2 resonance, and they could be able to resupply the high-e overlap region with much
better efficiency. Last, but not least, these two resonances could be one of the best possible path to
transport material form the region of Themis family to the 2:1 resonance.

2.2. Fate of injected particles

We have shown in the last section that weak MMRs at the left side of the Hecuba gap would
be able to inject asteroids into the 2:1 resonance. But, which is the typical fate of these particles
after they enter the 2:1 resonant space?

The answer to this question can be found by looking again at Figs. 2 and 3. Once the particles
were captured by the 2:1 resonance, they followed a fast diffusion path to Jupiter crossing orbits
and were discarded from the simulation after one or several close encounters with this planet. The
typical lifetime of injected particles (after the injection) is no longer than 10 Myr, and much smaller
in most cases. During this short lifetime, the eccentricity is chaoticaly driven to higher values, while
in several cases the inclinations become also excited above 10°. This behavior is related to the
presence of a highly chaotic region inside the 2:1 resonance, which is generated by the overlap of
several secular and secondary resonances. For e > 0.20, the resonant dynamics near the separatrix
is dominated by the overlap of secular resonances, mainly vs, vg and Kozai resonances (Morbidelli
and Moons, 1993). For 0.05 < e < 0.20, is the overlap of secondary resonances which dominates. A
secondary resonance occurs when the period of libration of ¢ is an integer multiple of the period of
circulation of w. Each of these resonances alone does not have a significant effect in the diffusion,
but in the case of the 2:1 resonance, the overlap of several p/1 secondary resonances (p > 2)
generates an important region of chaos at low eccentricities (Michtchenko and Ferraz-Mello, 1996).
This region behaves as a barrier, separating the low eccentricity region from the central region of
the 2:1 resonance, where the Zhongguos are found (Ferraz-Mello, 1994). The effect of this barrier
is to excite the inclination of the particles there up to values ~ 30° or larger. This excitation is
known to happen in relatively short time-scales, and allows to transport particles from the region
at e < 0.1 to the region at e > 0.4 of the 2:1 resonance through a “bridge” at high-inclinations
(Henrard et al., 1995).

The actual effect of the barrier of chaos related to the secular and secondary resonances is
illustrated in Fig. 5. We show there the evolution in the space of proper a,I of some initial
conditions in Sets #1 and #2. The top panel corresponds to the initial conditions at e = 0.25, and
the bottom one, to those with initial e = 0.20. Proper elements were defined here as minimum a and
maximum I over 10 Myr. For e = 0.25, we clearly distinguish two regions where the particles evolve
without exciting their inclinations. One is outside the 2:1 resonance, between 3.15 and 3.18 AU
approximately. The other is inside the 2:1 resonance, between 3.21 and 3.23 AU. This last region
corresponds more or less to the one where the Zhongguos are located. Both regions are separated
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by a “gap” of about 0.03 AU in width, where the inclinations are highly excited. This last region is
related to the overlap of secular resonances near the separatrix of the 2:1 resonance, located ~ 3.18
AU. A smaller excitation of the inclinations is also observed for values a ~ 3.25 AU, in this case
related to the secular resonance v16. For e = 0.20 the situation is slightly different. Still we can see a
region outside the resonance, between 3.15 and 3.20 AU, where the proper inclinations remain small.
But inside the 2:1 resonance, we observe a region of some 0.05 AU in width where the excitation
of inclinations is rather huge. This region is related to the overlap of secondary resonances. Since
the density of points in the space of proper elements is a rough indicator of the diffusion speed, we
can conclude, by comparing both panels, that the excitation in the region of the separatrix is faster
than that in the region of the secondary resonances. We will try in the following to better quantify
this diffusion speed.

Following the same recipe applied in RNF-I, we proceeded to mount a map of the residence
time in the space of proper elements. In short, we took the space of proper a,e in the range
3.14 < ap < 3.28 AU and 0.025 < e, < 0.425, and we divided it in 28 x 8 equal cells, each one with
Aa = 0.005 AU and Ae = 0.05. Then, we use the time series of proper elements of all the particles
in Sets #1 and #2 to determine the time that each particle spent in each cell. The time of residence
was computed over the 200 Myr interval spanned by our simulation or until the proper inclination
of the particle became larger than 10°. Since two or more particles can provide different values
of residence time for the same cell, in the end we consider their averages. This map of residence
times is shown in Fig. 6. The cyan-blue colors correspond to the largest residence times, while the
reddish colors correspond to the shortest ones. The blank cells were never occupied by any particle
in the simulation. We also show in this plot the approximate locations of the center and separatrix
of the 2:1 resonance (calculated analytically), the separatrices of the v15 resonance, the secondary
resonances 2/1,...,5/1, and the instability border (IB) which delimits the region of overlap of secular
resonances (these latter estimated numerically). To mount this map we have used two sets of proper
elements. The first one was defined as the minimum of a and the maxima of e, I over 10 Myr, with
a 0.1 Myr sampling. Unfortunately, this set is not able to resolve the residence time in the cells
corresponding to region of overlap of secular and secondary resonances. This is because the average
residence times there are shorter than 10 Myr. Then, we used a second set of proper elements,
defined as the minima/maxima over 1 Myr (also with a 0.1 Myr sampling), to “complete” the cells
where the former one failed to provide a residence time.

Several interesting features can be observed in Fig. 6. Outside the 2:1 resonance it is possible to
identify a pattern of inclined stripes related to the 5:—2:-2 and 7:—2:-3 resonances. We can also see
regions of rather strong stability (darker cells) surrounding these MMRs at low eccentricities. Inside
the 2:1 resonance, we observe a region of long residence times between the v16 and the IB line. This
is the region where the Zhongguos and Griquas are located (white and black dots, respectively).
The residence times there are larger than above the v4 line, in agreement with the results obtained
in RNF-I from a different simulation. But the most remarkable feature in Fig. 6 is the wide stripe
of short residence times that separates the stable regions outside and inside the 2:1 resonance. The
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Fig. 5.— Evolution of test particles in the space of proper a,I. The particles correspond to 70
initial conditions in Sets #1 and #2 for two different levels of initial eccentricity (35 particles in
each level). Proper elements are defined as maximum of I and minimum of a over 10 Myr, and are
sampled every 0.1 Myr. In the top panel, the proper inclinations are excited in the region of overlap
of secular resonances, and also at the v14 resonance. In the bottom panel, the excitation correspond
to the overlap of secondary resonances.
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Fig. 6.— Map of residence times, computed from the proper elements in a 200 Myr simulation of
test particles outside and inside the 2:1 resonance. We used two sets of proper elements, defined as
minimum of ¢ and maxima of e, I over 10 Myr and 1 Myr, respectively. Both sets had a 0.1 Myr
sampling. The plot also shows the location of the equilibrium centers of the 2:1 resonance (full thin
line), the separatrix (full bold line), the separatrices of the v secular resonance (dashed lines),
the instability border (IB), and four secondary resonances (dotted-dashed lines marked sy ;). The
white and black dots represent the real Zhongguos and Griquas, respectively.
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typical residence times in this stripe are of the order of 1 Myr or even smaller. It is worth recalling
that the residence times in Fig. 6 were computed while I, < 10°. Then, they are also likely to
represent the time necessary to excite the proper inclinations beyond 10°.

The above results put strong constrains to the possible origin of the resonant population in the
Hecuba gap. On one hand, it is clear that the mechanisms of injection analyzed in Sect. 2.1 can help
to resupply the population of unstable asteroids in the 2:1 resonance. Their rather high inclinations
and short lifetimes are in good agreement with the expected behavior of particles injected into
the 2:1 resonance, either by crossing the separatrix or the region of secondary resonances. It is
worth noting that inclinations will always be highly excited for particles in the region of secondary
resonances. However, inclinations not always become excited when the particles are injected in the
region of secular resonances. This is because in that region the diffusion in e, is much faster than
in I, then particles can be fastly driven to Jupiter crossing orbits without having enough time to
get their inclinations excited. A typical case is shown in Fig. 7, and such mechanism could explain
why we presently observe several resonant asteroids having rather low inclinations but very short
lifetimes (as the case of (5201) Ferraz-Mello, see Table 1 of RNF-I).

On the other hand, the origin of the Zhongguos cannot be supported under a scenario of
“smooth” injection. If we assume that these objects arrived to their present location from outside
the 2:1 resonance (for example from Themis family), they had to be able to cross a region of about
0.03 AU in @ or 0.05 in e in a time-scale not larger than a couple of Myr (in the most optimistic case),
in order to retain their presently observed low inclinations (I, < 5°). This is the most important
dynamical constrain to the origin of the Zhongguos (the other important constrain is observational,
and refers to their size distribution, see RNF-I). The remaining of this paper will be dedicated to
analyze some possible mechanisms that could account for the necessary drift to inject the Zhongguos
in their present location.

2.3. Yarkovsky orbital drift and mutual scattering

As we already mentioned in Sect. 2.1, non conservative forces and perturbations other than
purely planetary ones, could play a non negligible role in the origin of resonant asteroids at the
Hecuba gap. Non conservative forces, for example, allow the mobility of the semi-major axes and
help to interchange material between regions of regular and chaotic motion. In this section we will
discuss the possible role of two mechanisms that favor the mobility of a: (i) Yarkovsky effect and
(ii) mutual scattering.

Yarkovsky effect (hereinafter YE) arises from the thermal recoil of a rotating body, which
receives the solar radiation from a given direction and re-emits part of it to a different one. There
are two variants of the effect: the diurnal, related to the rotation period, and the seasonal, related
to the orbital period. The former behaves as a dissipative or anti-dissipative force, depending on the
sense of rotation (retrograde or prograde), while the latter is always dissipative (Rubincam, 1995).
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Fig. 7.— Evolution of the osculating elements for a short-lived test particle injected in the 2:1
resonance. The particle was initially at e = 0.4. Note that e is largely excited, but the excitation
of I is much slower, and the particle escaped while still having a low inclination.
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Both effects cause a net drift in proper a which is inversely proportional to the size of the body. In
Sect. 3.2 of RNF-I, we have already described simulations with Yarkovsky effect, so we refer the
reader to that paper for more details.

To analyze the actual importance of this effect in enhancing the diffusion at the left side of
the Hecuba gap, and in favoring the injection of asteroids into the 2:1 resonance, we performed
the following simulation. We took 50 initial conditions from Set #1 in the range 0.15 < e < 0.30,
and integrated them again, this time adding YE to the simulation. We used a version of the Swift
integrator that we adapted for this purpose. The YE accelerations were modeled according to
Vokrouhlicky et al. (2000). The parameters of the model were typical of regolith-covered bodies,
with a very low surface conductivity, in order to have a dominant diurnal effect (refer to RNF-I
for the precise values of these parameters). We assumed a diameter of 6 km for all the particles,
and randomly-oriented prograde spin axes to obtain a net anti-dissipative force. The simulation
spanned 100 Myr with a time step of 0.05 yr. We computed proper elements as usual (averages over
10 Myr, with 0.1 Myr sampling), and estimated the diffusion parameters o, 0,01 and B, B¢, Or as
explained in Sect. 2.1 (see also RNF-I). In this case, the parameter 3, has a quite special meaning,
because it gives the effective average drift rate induced by YE.

Figure 8 presents the results of this simulation. The abscissas of each plot are the diffusion
parameters for each particle in the simulation without YE, while the ordinates are the same pa-
rameters in the simulation with YE. In all panels we can appreciate a tendency to larger values of
the parameters in the simulation with YE. This is remarkable in the case of proper a, as expected,
but is also observed in the case of e, and (although less evident) in the case of I, also. We recall
that YE by itself should not cause any significant drift of the eccentricities and inclinations. The
larger values of diffusion in ey, I}, observed in the middle and bottom panels of Fig. 8 are rather
due to the interaction between YE and the weak MMRs. More precisely, an object near a MMR
can be pushed by YE until it reaches the MMR;; then it can be driven to enter it or to jump over
it. In any case, this causes and excitation of their otherwise stable e, and I,,. It is worth noting
that the inverse process, that is, to extract a body from a MMR with YE, is not so straightforward.
In fact, once an object becomes capture in a MMR, it is rather difficult that YE can draw it out.
This can be better understood if we recall that non conservative systems tends to configurations of
minimum energy, and the MMRs themselves are basins of energy. The interaction between YE and
weak MMRs is still not well understood. Unfortunately, the construction of analytical models is
quite complex in this case, and the classical models for low order MMRs (see Gomes, 1995, 1997a,
and references therein) are not directly applicable.

On the other hand, these classical models are helpful to understand the interaction between
YE and the 2:1 resonance, at least in a first approach. We recall that inside the 2:1 resonance,
the “natural” effect of any anti-dissipative force will be to excite the eccentricities while keeping
constant the amplitude of libration. In other words, consider an ideal 2:1 resonance, with no secular
or secondary resonances inside it, and consider a particle approaching to its left border pushed by
YE. Then, once the particle enter the resonance, its eccentricity will be excited to higher values and
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~19 —

its amplitude of libration will behave as an adiabatic invariant. This mechanism can make a nearby
non resonant asteroid at e ~ 0.15 (e.g. a Themis family member), to become a Zhongguo-like
asteroid with e ~ 0.25. But in the real 2:1 resonance, this implies to cross the region of secondary
resonances, where the asteroid will not avoid to excite its inclination, unless it cross sufficiently fast.
How fast? The rate of change in a, which is necessary to achieve a given change in e, can be easily
estimated from Lagrange equations in the averaged circular planar restricted 3-body problem near
the 2:1 resonance (see Greenberg and Franklin, 1976). It is given by:

(%) =2@e (%), )

where (. ..) stands for the average, and we can consider (a) = a, and (e) = ep. Now, according to the
results of Sect. 2.2, the particle would need a drift de,/dt ~ 0.02 Myr ! in order to cross the region of
secondary resonances without having its inclination excited, which implies da,/dt ~ 0.02 AU Myr~.
From Fig. 8 (top-right panel), it is easy to estimate that the average rate of drift in a, provided by
YE for 6 km bodies at the left side of the Hecuba gap is between 8 x 1076 < 8, < 5 x 107® AU
Myr~!. This represents about 0.02 AU per Byr, in good agreement with the estimates of Farinella
and Vokrouhlicky (1999) for regolith bodies. Such rate is enough to keep objects moving around
in ap during the age of the Solar System. But on the other hand, it is too slow to allow a particle
to safely cross the region of secondary and/or secular resonances inside the 2:1 resonance, without
highly exciting its e, and I,. In other words, to inject the observed Zhongguos in their present
location, we would require to move objects larger than 6 km at a rate of about 2/100 AU per Myr,

which is four orders of magnitude larger than that provided by YE.

In order to confirm these estimates, we took some particles from our simulation, starting very
close to the 2:1 resonance border, and extended their integration up to 300 Myr. In Fig. 9, we
show the evolution of a, (averages over 1 Myr, with 0.1 Myr sampling) for three different values of
proper eccentricity. After 100 Myr several particles became injected in the 2:1 resonance, but their
lifetimes after the injection is not larger than some 10 Myr. In all cases, the injected particles had
their proper inclinations excited to values larger than 20° in a few Myr, as expected. Our conclusion
is that it would be highly improbable that YE helps to inject the Zhongguos in the 2:1 resonance.
However, we want to stress that our simulations were limited, both by the small number of test
particles and by the chosen values for the YE parameters, and we believe that more detailed studies
would be necessary to draw any definitive conclusion.

The case of mutual scattering is not so different from YE. Mutual scattering arise from the
gravitational perturbation of small asteroids between them or by the largest asteroids in the main
belt. Recently, it has been proposed by Carruba et al. (2000) that mutual scattering could contribute
to the semi-major axis mobility of main belt asteroids. Preliminary studies by these authors show
that only the largest asteroids (Ceres, Pallas and Vesta) seem to have a dominant scattering effect
throughout the main belt, although this effect would not be large. According to Monte Carlo
simulations (Bottke, personal communication), the average dispersion in proper a induced in a
typical Themis family member by close encounters with Ceres should be about 1/100 AU per Byr
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Fig. 9.— The evolution of proper a (averages over 1 Myr) for test particles near the border of the 2:1
resonance under the effect of Yarkovsky forces. All particles have 6 km in diameter and prograde
rotation. Their proper eccentricities are indicated in each panel. Some particles are effectively
injected in the 2:1 resonance, but they do not survive there for more than some 10 Myr. All the
particles injected had their inclinations excited up to 20° or more.
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(or maybe less, since Monte Carlo codes tend to overestimate these quantities). This rate of diffusion
is even smaller than that of YE, and according to the above considerations we can conclude that
mutual scattering is mostly irrelevant to the process of injection of resonant asteroids in the Hecuba

gap.

3. Resonant capture due to planetary migration

We will discuss in this section another mechanism to “inject” asteroids in the 2:1 resonance,
that is, the capture due to migration of the resonance. It is widely accepted now that the major
planets did migrate (changed their semi-major axes) during a certain period of their history (Fer-
nandez and Ip, 1984, 1996). This migration arose from the exchange of energy and momentum
between the Jovian planets and the swarm of planetesimals that remained in the region beyond 10
AU immediately after the formation of these planets. The planetesimals were scattered by close
encounters with all four major planets, but the scattering by Jupiter was much more efficient than
that of Saturn, Uranus and Neptune. This caused a net loss of planetesimals, which were presum-
ably ejected to the Oort cloud, and the corresponding energy balance was transferred to the drift
in the planetary semi-major axes. Under this scenario, Jupiter migrated inwards, from about 5.4
AU to its present 5.2 AU, while the other planets migrated outwards by some 0.8 AU (Saturn), 3.0
AU (Uranus) and 7.0 AU (Neptune) up to their present positions. It is still under discussion when
did this migration take place, but in any case, it should be dated more than 3.8 Byr ago (Levison
et al., 2001), and it should have had important consequences in the dynamics of the whole Solar
System. One of these consequences was the migration of the MMRs. As the semi-major axis of the
planet drifted, it pulled the MMRs and these latter swept the regions where they passed by. When
a sweeping MMR reaches an object, it can be either captured in the resonance, or it can jump over
the resonance, depending on the type of resonance (inner or outer), the order of the resonance, and
the sense of the sweeping.

If we assume the above estimates to be correct, then the 2:1 resonance should have been
migrated inwards from 3.40 AU to 3.28 AU, sweeping a region larger than half its width. During
this process, we should expect that several asteroids with low eccentricity became captured in the
resonance. In fact, the migration of the 2:1 resonance inwards behaves almost in the same way as
the application of an anti-dissipative force on the asteroids. For e < 0.2 the 2:1 resonance is “open”
on the left side (there is no separatrix), and during the sweeping inwards it would pick up asteroids
virtually like a “shovel”. According to the theory, the captured asteroids would evolve exciting their
eccentricities monotonically, while their amplitudes of libration are kept almost constant (adiabatic
invariant). The relation between the values of the asteroid’s orbital elements before and after the
capture, is given approximately by the conservation of the canonical momentum N (Eq. 1). This
relation can be used to estimate the final eccentricities of the captured population as a function of
the total shift of the resonance in a.

The sweeping of MMRs is believed to have been responsible for the resonant capture of some
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groups of minor bodies, like the group of Hilda at the 3:2 resonance with Jupiter (Liou and Malhotra,
1997), and Plutinos at the 2:3 resonance with Neptune (Malhotra, 1995; Gomes, 2000). In the case
of the 2:1 resonance, we can guess that a large population of asteroids was indeed captured during
the planetary migration, but it was not able to survive until our days due to the global stochasticity
of the resonant phase space (Ferraz-Mello et al, 1998b). The question is: could the Zhongguos be
the lucky survivors of such presumably captured population of asteroids?

According to their typical dynamical lifetimes (see RNF-I), they could. Unfortunately, this
is not enough evidence to conclude that they are. In fact, the resonant capture due to planetary
migration is a mechanism much more complex than the simplified view given above. It involves sev-
eral dynamical processes, like sweeping of secular resonances and planetary inequalities, that would
have helped to strongly destabilize the asteroids’ orbits. For example, outside the 2:1 resonance,
the sweeping of the secular resonance vg was responsible for a huge excitation of the asteroids’ e, [
throughout the main belt (Gomes, 1997b). Inside the Hecuba gap, slight changes in the value of the
Great Inequality (5:2 commensurability) between Jupiter and Saturn were able to largely increase
the chaotic diffusion (Ferraz-Mello et al., 1998a). Also, in order to become captured at e ~ 0.3,
the asteroids needed to pass through the region of secondary resonances at e ~ 0.15, with the con-
sequent constrain to their lifetimes (Sect. 2.2). Moreover, we should expect that a non negligible
amount of the planetesimals scattered during the migration were thrown towards the inner Solar
System (Levison et al., 2001), and contributed to largely perturb the asteroids and to increase the
collisions throughout the main belt. In other words, if the origin of the Zhongguos is related to the
planetary migration, then they probably needed to pass by several hard tests before being able to
remain trapped in a quite small region of the phase space where they could evolve in peace until
our days.

To better discuss the viability for capturing the Zhongguos through migration of the resonance,
we simulated the evolution of a swarm of 200 test particles under the effect of planetary migration.
For each particle, the initial semi-major axis was chosen at random in the interval 3.15 < a < 3.46
AU, which was more or less the interval swept by this resonance if Jupiter migrated by 0.2 AU.
The initial e, I were also chosen at random, dividing the swarm into two populations of 100 initial
conditions each: (i) a “cold” population in the intervals 0 < e < 0.1 and 0 < I < 2.5° | and a
“hot” population, with 0.1 < e < 0.2 and 2.5° < I < 5°. In both cases the remaining initial angles
were also chosen at random between 0,360°. The total migration time was set to 20 Myr, but the
simulation was continued for 2 Myr more after the migration ceased. The migration was included
in the model by adding to the planets’ accelerations an artificial non conservative term, ch, given

by: -
ch =V GMCHC 6_(t_t0)/T m (3)

where G is the gravitational constant, M the solar mass, ? the velocity of the planet, ¢ the time,
to refers to the time at the beginning of the migration (for our purposes will be tg = 0), 7 is the
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characteristic time-scale of the migration (do not confuse with the total migration time), and

ot (G- 4)

is a constant that depends on the initial and final values of the planet’s semi-major axis, a;,af
(see Malhotra, 1995). We used a modified version of the Swift integrator that we adapted for this

purpose’.

Equation (3) provides an exponential variation of a that converges asymptotically to as. For
our simulation, we choose a; equal to the present mean semi-major axes (Bretagnon, 1982), and
a; = 5.4 AU for Jupiter, 8.7 for Saturn, 16.3 for Uranus, and 23.2 for Neptune. These values made
Jupiter and Saturn migrate in such a way that they started near the mutual 2:1 commensurability
and ended near the mutual 5:2 commensurability, but without entering or crossing them (however,
they did cross the 7:3 and 9:4 commensurabilities). The characteristic time-scale 7 is a critical
parameter, because it determines the actual speed of the migration: 63% of the migration happens
in that time-scale. In our case it was set to 7 = 2 Myr, according to typical values found in the
literature. However, recent studies indicate that this time-scale could be up to 10 times larger
(Hahn and Malhotra, 1999). Another critical problem concerns the setup of the initial position and
velocity of the planets. In our case, we applied a strategy already used by several authors, consisting
in integrate the four major planets backwards, starting in their present positions and applying the
non conservative forces in the opposite sense*. The “final” conditions so obtained could be used as
“initial” conditions of the migration, but unfortunately the integrations are not reversible. This is
easy to understand if we think that the planets cross several mutual resonances along its migration
paths. While in the backwards integration the planets could be able to jump over such mutual
resonances, in the forward integration they could be able to be captured in some mutual resonance
(and vice-versa). The probability of capture is somehow related to characteristic time-scale 7: the
longer the latter, the larger the former. Then, after obtaining our “initial” conditions with the
backward integration, we had to perform a series of forward simulations, making a fine tuning
of the constants Cy. until we arrived to a configuration where the values of the planetary mean
semi-major axes were compatible with the present ones.

The results of our simulation with test particles and migrating planets are summarized in Fig.
10. We indicate there the position of the particles in the space of proper elements a,,e, and ay, Ip,
for three different times along the simulation. The proper elements were defined as the minimum
of a and the maxima of e, I over 1 Myr, with 0.1 Myr sampling. We also indicate the approximate
location of the resonance and the separatrices in the a, e plane.

3Note that this acceleration depends on the velocity, so the leap-frog propagation scheme used by Swift is no
longer symplectic. Although this approach has been widely used by many authors, its main disadvantage is that the
algorithm slows its efficiency because the accelerations need to be computed twice per time step.

“In practice this was accomplished just by setting to = —20 Myr and integrating from ¢ = 0 to ¢ = —20 Myr.
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Fig. 10.— Three stages in the simulation of test particles including planetary migration. Top panels:
proper elements at the beginning of the simulation; middle panels: status after 1 Myr of migration;
bottom panels: final proper elements, 2 Myr after the migration ceased. Proper elements are defined
as minimum of ¢ and maxima of e, I over 1 Myr, with 0.1 Myr sampling. Crosses are particles that
started the simulation inside the 2:1 resonance, and dots are particles that started outside. The
dotted rectangle in the top panels indicates the approximate distribution of the osculating initial
conditions of the simulation. In the leftmost panels we indicate the approximate location of the
center (full thin line) and the separatrices of the resonance (bold lines). The dashed line indicates
the approximate limit between the region of libration and alternation/circulation of o. In the
bottom-left panel, we also plot the location of the vig resonance and the instability border (IB).
Only particles with I, < 10° are shown in the bottom panels. Finally, the arrow indicates the
particle shown in Fig. 11

The first two panels show the state of the system at the beginning of the simulation (¢ = 0).
Crosses represent particles that are already inside the 2:1 resonance (97 particles), while dots are
particles that started the simulation outside the resonance (103 particles). To identify the resonant
particles, we integrated the initial conditions of planets and particles over 1 Myr without including
migration, and looked at the behavior of the angle o. This simulation also provided the initial set
of proper elements at ¢ = 0.

The remaining panels in Fig. 10 show the state of the system after 1 Myr of migration and
at the end of the simulation (22 Myr; recall that we ceased the migration at 20 Myr). The last
two panels only show those particles that ended with a proper inclination smaller than 10°. Several
features can be appreciated in these plots. At ¢ = 1 Myr, the particles located at the left side
of the resonance have suffered a large excitation of their proper eccentricities (their average e is
between 0.2-0.3). This kind of behavior has been already identified by Gomes (1997b) and Levison
et al (2001), and was attributed to the sweeping of secular resonances. In our simulation only the
eccentricities were excited, while the inclinations remained small. This is most probably related to
the sweeping of some strong secular resonance of the perihelion, maybe vg. We can also see that, at
t = 1 Myr, a large part of this e-excited population is entering the 2:1 resonance, jumping through
the separatrix. Most of these captured particles remained near the separatrix and did not survive
too much inside the resonance, being fastly driven to Jupiter crossing orbits. On the other hand,
some particles at the left side of the resonance did not have their eccentricities excited, and became
to approach the resonance at e, < 0.2. This is the case of the particle indicate by an arrow in Fig.
10. At ¢t = 22 Myr this particle has already entered the resonance and remained in the region of the
Zhongguos, with a final proper I less than 5°. The actual behavior of this “baby Zhongguo” during
the migration is shown in Fig. 11. We can appreciate there the exact moment when it entered the
resonance, between ¢ = 0.7 and 1 Myr. After entering the resonance, it took less than 5 Myr to
arrive to its final location. Since it ended in the most stable region of the 2:1 resonance, we can
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expect that this particle will be able to survive there over the age of the Solar System.

Back to Fig. 10, some other particles were also captured in the resonance at the end of
the simulation, keeping their low initial inclinations. From the initial 103 particles starting the
simulation outside the resonance (dots), 16% ended captured at ¢ = 22, and only 8% did it with
I, < 10°. However, the proportion of “cold” and “hot” particles in these statistics is different: 16%
of the cold population was captured against 14% of the hot population. But 9% of the hot particles
ended captured with I, < 10°, against 6% of the cold ones. This difference could be related to the
eventual interaction with secondary resonances during the capture process. From the preservation
of the invariant N (Eq. 1), it is easy to show that cold particles take more time to excite their
eccentricities during the capture, having more time to interact with the web of secondary resonances.
It is true that the secondary resonances themselves will move during the migration, but their net
shift should not be large. In fact, the 2:1 resonance itself dictates the proper rate of motion of the
asteroids‘ perihelia inside it, and this rate is less changed by the migration.

Concerning the 97 particles starting the simulation inside the resonance (crosses), only a few
amount (4%) were still there after 22 Myr. Some of them also survived at the right side of the
resonance, like having been left by the resonance during its migration leftwards.

Our results concerning the capture of Zhongguo-type objects due to migration provide the
first evidence of a mechanism able to inject such objects inside the 2:1 resonance. However, as we
already mentioned, resonant capture due to migration involves many different dynamical processes
that interact between them in a complex way. Our simulation considered a quite small number of
test particles, which does not allow to make a good statistical analysis of the results. Moreover, we
only tested a very particular model of migration (exponential) with a very particular value of the
characteristic time-scale. Would we obtain similar results, for example, if we use a value of 7 ten
times larger? The answer to this and to other similar questions is beyond the scope of this work,
and the problem is still open for future, more detailed, studies. In the next section we will discuss
another mechanism to inject objects inside a resonance, related to the breakup of asteroids in the
neighborhood of the resonance.

4. Catastrophic injection

It has been proposed (Morbidelli et al., 1995; Moons et al., 1998) that the Zhongguos could
be the resonant counterpart of the Themis family. That is, the breakup of Themis near the 2:1
resonance would have probably injected a lot of asteroids inside the resonance, and the Zhongguos
would be the remnants of this injected swarm. The basic arguments to support this hypothesis
are three: (i) The proper eccentricity of (3789) Zhongguo is very similar to the typical proper
eccentricity of the Themis family members, that is e, ~ 0.2. In this case, e, is understood as the
maximum of e. (ii) The distribution of Themis family in proper semi-major axis (i.e., minimum
of a) has a cutoff at the separatrix of the 2:1 resonance, but (3789) Zhongguo seem to be at the
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Fig. 11.— The evolution of osculating elements for the particle indicated by an arrow in Fig. 10.
The particle ended captured in the region of Zhongguos.
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tail of the “natural” prolongation of the distribution inside the resonance. (iii) The Zhongguos are
very small objects (less than 15 km) and their collisional lifetimes should be smaller than the age
of the Solar System (~ 1 — —2 Byr). Then, it is difficult to assume that they have actually been in
the resonance for the last 4.5 Byr. Arguments (i) and (ii) are not very strong indeed, because they
require that the breakup occurred at a very particular configuration, when the parent body was at its
maximum excursion in eccentricity. Moreover, they are based on the present observed distribution of
Themis family members, and they do not take into account that the original distribution (after the
breakup) could have been much more compact. In fact, the present distribution can be the result of
the dynamical diffusion at the left side of the Hecuba gap (weak MMRs, Yarkovsky, etc.), similar to
the case of the Flora family in the inner belt (Nesvorny et al, 2001). On the other hand, argument
(iii) is one of the strongest arguments in favor of the catastrophic injection of the Zhongguos. We
have already discussed this problem in RNF-I, so we refer the reader to that paper for more details.

In this section, we are going to present some simple simulations aiming to determine under
which conditions a breakup of a Themis-like parent body can eject fragments with the necessary
velocity to reach the region of Zhongguos inside the 2:1 resonance. For this purpose, we are going
to use a very simple model of breakup with isotropic ejection of fragments, as we explain in the
following.

The kinetic energy of the fragments after the breakup event can be written as
1
> gmivi = MQj fxe (5)
i

(see Petit and Farinella, 1993) where m; and v; are the masses and velocities of the fragments,
M =), m; is the mass of the parent body, @}, is the specific energy of the impact, and fkg is the
so-called parameter of anelasticity, and represents the fraction of the kinetic energy of the projectile
that is transferred to the kinetic energy of the fragments. For a parent body of radius Rpg and
density ppp the specific energy can be estimated as:

e ©

lecm

where B, b are parameters that depend on the chemical properties of the parent body. According
to Benz and Asphaug (1999; see also Love and Ahrens, 1996) typical values for stony bodies are
B = 0.3 — 0.5 erg cm® g ?(we will use 0.4) and b = 1.36. The parameter fxg is the most critical
one, because it determines the actual dispersion of the fragments after the breakup: the smaller the
fxE the more compact the family formed. Unfortunately, this parameter is poorly known. Recent
studies using hydrocode models estimate values of fxg between 0.065 to 0.10 for S-type bodies
(P. Michel, personal communication), and smaller values (~ 0.01) should be expected for C-type
objects (like Themis) since, according to laboratory experiments, they should absorb much more
energy.

The first assumption in our model is that the distribution of ejection velocities N (v,;) can be
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modeled by a Maxwellian, with mean velocity v,;. given by:

72, = L )
i m

We further assume that the ejection velocity is independent of the mass of the fragments. Although
this assumption is consistent with the results of Giblin et al. (1998), there exist evidence of a
possible velocity-size relationship between the members of asteroidal families (Cellino et al., 1999).
But our model is not aimed to reproduce the actual shape of the observed families, and the above
assumption can be considered more than adequate for our purposes. Finally, we also assume that
the ejection is isotropic, in agreement with the results of Zappala et al. (1996) for most asteroidal
families. Following Petit and Farinella (1993), we estimate the escape velocity as:

4
V2, = 1.64G§7rppBR%B (8)

where G is the gravitational constant. Only the fragments with ve; > ves. are able to escape, with
a relative velocity “at infinity” v2, = 'ugj — vZ,.. From N(v.;), we obtain the correlated distribution
N(vs), and we further assume that it has an upper cutoff at a speed veys = 1000 m s~!. The
distribution N (v) is then decomposed in the distributions tangential to the orbit N (vr), radial
N (vg), and normal N (vy). Finally, the orbital elements a,e, I of the fragments relative to the
parent body are computed using Gauss equations, while for A\, w, ) we assume the same values of
the parent body. It is worth recalling that, to compute Gauss equations, we need to assume the
values of the true anomaly f and the argument of perihelion w at the moment of the breakup.

Following the considerations in Morbidelli et al. (1995), we choose here f = 90° and f 4+ w = 45°.

Using this model of isotropic ejection, we simulated the formation of synthetic Themis families
for different values of the parameter fxg. We considered a Themis-like parent body with ppg = 1300
kg m~3 (typical of C-type bodies) and Rpg = 200 km. This radius was estimated by simply adding
the mass of all the presently known members of the family (1850 asteroids, as determined in RNF-I),
but it is also in good agreement with the estimates of Tanga et al. (1999). The orbital elements of
the parent body were taken from a numerical integration of Themis itself: a = 3.124 AU, e = 0.203,
I1=1.13°0~0,w—wy~0and Q—Qy ~ 0. With these values, the parent body is at a maximum
of eccentricity at the moment of the breakup. The advantage of this choice is twofold: (i) it puts
the parent body in its nearest approach to the 2:1 resonance border (Morbidelli et al., 1995); (ii) the
resulting osculating elements a, e, I of the fragments, obtained from Gauss equations, are equivalent

to their resonant proper elements ap, ep, I, (recall that all fragments will have ¢ ~ 0, w ~ wy and
O~ QJ)

In Fig.12, the shaded histogram represents the distribution in proper a of a synthetic Themis
family (2000 fragments) generated with fxg = 0.01. The outlined histogram is the actual distribu-
tion of Themis family, and the small histogram at the lower-right edge corresponds to the observed
Zhongguos (see Table 3 on RNF-I). As expected, the distribution of Themis family shows a sudden
cutoff at the border of the 2:1 resonance (Sx). If we extrapolate this distribution inside the reso-
nance, the Zhongguos appear to effectively lie in the tail the distribution. On the other hand, the
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synthetic family shows a very narrow distribution, and the fragments were not able to reach the
border of the 2:1 resonance. The difference between the synthetic and the real family is notorious,
If we assume that our model of fragmentation is essentially correct, then the rather flat distribution
of the real family can be related to: (i) an already flat initial distribution after the breakup, or
(ii) the subsequent dynamical dispersion of the family due to weak MMRs, Yarkovsky, etc. The
former option is quite improbable, because to obtain such initial flat distribution we should consider
values of fxg ~ 1 or larger. Then, we believe that the second option is the actual responsible of the
presently observed distribution.

On the other hand, it is worth noting that we do not need to consider very high values of fkg
to inject asteroids in the resonance. In fact, with values as small as 0.03 some fragments are already
able to reach the resonance border. The actual implications of this mechanism in the origin of the
Zhongguos can be better appreciated in Fig. 13. We plot there the distribution in the space of
proper elements of the ejected fragments (black dots) from three simulations, using fkr = 0.01, 0.05
and 0.10, respectively. The top panels correspond to the same simulation shown in Fig. 12. The
grey dots are the actual Themis family, and the open circles are the Zhongguos. The circle indicated
by an arrow is Zhongguo itself. This asteroid, together with the small cluster of 1975 SX (see Fig. 7
of RNF-I), seem to be the natural extension of Themis family inside the resonance, as Morbidelli et
al. (1995) already pointed out. However, the cluster of resonant asteroids that really matters is that
of 1994 UD1, located at e, ~ 0.27. As we showed in RNF-I, this cluster lies in the most stable region
of the 2:1 resonance, and concentrates almost 70% of the stable population. According to Fig. 13,
this cluster is far from the region where the possible Themis outcomes would be eventually injected,
and its origin seems unlikely to be related to the breakup of Themis. However, we cannot totally
rule out this possibility because there could exist some unknown dynamical mechanism inside the
2:1 resonance able to transport the injected fragments to the region of 1994 UD1. Moreover, if we
consider a very energetic impact, (bottom panels of Fig. 13), some fragments can reach the resonant
space at the right side of the resonance center. Due to the symmetry of the resonant motion along
the lines of N = const. (Eq. 1), these fragments will be actually in the region of 1994 UD1 at the
left side of the resonance center. Notwithstanding, we must recall that the value fxg = 0.1 is very
much larger than that we should expect in the breakup of a typical C-type body. Then, we believe
that the scenario shown in the bottom panels of Fig. 13 would never hold at all.

5. Conclusions

In this paper we have analyzed different hypothesis for the origin of the asteroids in the 2:1
resonance with Jupiter (Hecuba gap). All these hypothesis are related to the idea of the injection of
asteroids in the 2:1 resonance from the neighbouring regions. We have concentrated our attention
on the left side of the Hecuba gap, which accounts for a huge population of asteroids, most of them
related to Themis family.

We have discussed three possible mechanisms to inject asteroids in the 2:1 resonance: (i) chaotic
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Fig. 12.— The shaded histogram represents the distribution in resonant proper semi-major axis of
a synthetic Themis family, with 2000 fragments generated with our model of isotropic ejection using
fxke = 0.01. The outlined histogram is the actual distribution of 1850 Themis family members. The
bold vertical line indicates the location of the separatrix of the 2:1 resonance. The small histogram
at the right side of the separatrix corresponds to the 61 known Zhongguos. All the histograms are
projected in the plane e, = 0.203.
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Fig. 13.— Top to bottom: Three different simulations of the breakup of a Themis-like parent body,
using different values of fxg. The black dots represent the distribution of the fragments in the space
of resonant proper a,e (left) and a.I (right).We generated 2000 fragments in each simulation. The
average value of v, is indicated in each case. The open circles are the stable resonant asteroids. The
asteroid indicated by an arrow is (3789) Zhongguo. The cluster of resonant asteroids at e, ~ 0.27
is the group of 1994 UD1 (see RNF-I). The gray dots in the top panels correspond to the actual
Themis family. We also show the location of the resonance center (full thin line), separatrix (bold
line), instability border (dotted line marked IB) and 146 resonance (dotted-dashed line). In the
lower-left panel, we also plot the curve of N = const. (dashed line) that passes through the cluster
of 1994 UD1. Recall that the motion of the resonant asteroids is symmetric with respect to the
center of the resonance along this curve.

diffusion in the neighborhood of the resonance, (ii) capture due to migration of the resonance, and
(iii) breakup of a Themis-like asteroid.

We have found that the dynamics at the left neighborhood of the resonance is dominated by
several weak mean motion resonances, most of them involving the orbital periods of Jupiter and
Saturn simultaneously. Asteroids captured in these resonances have their eccentricities excited and
can reach the border of the 2:1 resonance, being then injected. This mechanism proved to be efficient
over time scales of some 100 Myr, but only for asteroids that are close to the resonance border. On
the other hand, the overlap of weak mean motion resonances at high eccentricities (e > 0.35) allows
asteroids to randomly walk over large intervals of semi-major axis (~ 0.1 AU). This overlap could
help to inject objects in the 2:1 resonance in an even shorter time scale (some 10 Myr).

The particles injected by these mechanisms arrive to the most unstable region of the resonant
phase space, and do not survive in the resonance for more than 10 Myr, at most. Then, these
mechanisms provides a flux that could help to keep the population of unstable resonant asteroids
in a steady state. But it cannot account for the origin of marginally unstable (Griquas) and stable
(Zhongguos) populations.

We have also discussed the possible role of Yarkovsky effect and mutual scattering by main belt
asteroids in enhancing the flux of injected asteroids. For bodies larger than 5 km, Yarkovsky effect
accounts for a net drift in semi-major axis of about 1/200 AU per Byr or less. Then, Yarkovsky
effect can contribute to the flux of unstable resonant asteroids, but the provided drift is not enough
to inject objects in the most stable places of the resonant phase space. The main constraint is
related to the huge excitation of the inclinations occuring when the asteroids cross the resonance
border, which is not compatible with the rather low inclinations of the observed Zhongguos. Similar
considerations hold for the effects of mutual scattering.

We have investigated the possibility of resonant capture due to migration of the 2:1 resonance.
If planetary migration happened during the early history of the Solar System, it caused the decay of
Jupiter’s semi-major axis by some 0.2 AU, with the consequent drift of the 2:1 resonance inwards.
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According to our simulations, this drift could favor the capture of low-eccentricity non resonant
asteroids by the 2:1 resonance. We simulated an exponential migration with a charateristic time
scale of 2 Myr, and found evidence that such mechanism could create a primordial population of
resonant asteroids, with dynamical properties compatible with the observed Zhongguos. However,
our results need to be confirmed by more detailed studies, using more reliable models of planetary
migration.

Finally, we have discussed the origin of the 2:1 resonant asteroids in the framework of the
breakup that originated Themis family. We simulated a fragmentation of a Themis-like parent body
using a simple model where the ejection velocity is assumed to be independent of the fragments’
masses. We have found that, for small values of the anelasticity parameter fxg, typical of C-type
bodies, it is not possible to inject fragments into the 2:1 resonance. For larger values, the injection
is possible, but the fragments arrive to a region of the resonant phase space which is not compatible
with the presently observed distribution of Zhongguos. Although we cannot rule out this mechanism
of injection, a relation between the breakup of Themis and the origin of Zhongguos seems unlikely.
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