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ABSTRACT

We develop an analytical model for the long-term (seculgnadnics of irregular satellites
of the giant planets. The disturbing potential in this moidetepresented by a high order
(in semimajor axis, eccentricity and inclination) Legemdxpansion. We use a third-order
Hori's averaging method to eliminate terms in the origingligtions that are irrelevant for the
long-term dynamics and to construct new second and thilérasecular terms. The resulting
secular equations are valid for both direct and retrogratigso(of any inclinations) and for
eccentricities up tez 0.7.

In the present paper we describe the mathematical backgroiuour method and test it in
several applications. The method uses a Hamiltonian fatiam of dynamics. The original
Hamiltonian and its high-order secular forms are represkiy series that have self-similar
functional forms. The coefficients of these series are ¢aled by using an algebraic manipu-
lator. This approach allows us to iterate the Hori's peratidn method to high orders.

To test our method, wé@) calculate the precession frequencies of orbits of the uleerg
satellites at Jupiter, an@) determine the the dynamical structure of the Kozai resanavie
show that this resonance occurs at progressively largepépy inclinations with increasing
separation of the satellite from the parent planet. Thesgltseare compared to those obtained
by numerically integrating the exact equations of motionr @eory will be particularly useful
for determining the locations and strengths of secularrmasoes in the space occupied by
distant satellite orbits. Several irregular satellitegsenbeen trapped in secular resonances by
some, likely primordial mechanism.
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1. Introduction

Following Burns (1986), we define the irregular satellitéshe outer planets as those moons that are
sufficiently far from the planet such that the precessiorhefdrbital plane is dominated by the solar per-
turbation. These bodies are thought to have been capturdtkhylanet during the last stages of planetary
formation, but the exact mechanism of capture is not coralyleinderstood. Dynamically, they are charac-
terized by large planetocentric semimajor axis and higlkeeticities. Some irregular satellites have direct
orbits (i.e. same direction as the planet orbits the Surt)ifany move in retrograde planetocentric orbits.
In both cases the inclination can also take very high valupsto 40 degrees for direct orbits, and40
degrees for retrograde bodies. Carruba et al. (2002) anddigset al. (2003) have recently shown that
the orbits with intermediate inclinations:60°-120°) are unstable due to the effects of the Kozai resonance
(Kozai 1962).

Notwithstanding their large semimajor axes and high ecw#igs the irregular satellites have stable
orbits. If chaos exists, it is weak, as in the case of the Josaellite Sinope (Saha and Tremaine 1993).
This allows researchers to apply perturbation theoriesadin useful approximations of the long-term
dynamics of irregular satellites via analytic calculagon

Sophisticated analytical theories for satellite motiotedaom the 19th century, developed mainly to
explain the motion of the Moon (e.g. Delaunay 1860, 1867).th®@irregular satellites, however, analytical
perturbation methods are more challenging. First, thetalrlcharacteristics require that the expansion of
the disturbing potential is done to high orders in orbita@neénts. Second, the complex interaction between
the different degrees of freedom of the dynamical systemlavoequire a high-order perturbation method
and the use of algebraic manipulators.

These difficulties have taken their toll: the long-term dynes of irregular satellites is only partially
understood. When analytical or semi-analytical modelscarestructed (e.g. Hénon 1970, Kinoshita and
Nakai 1991, Carruba et al. 2002, Yokoyama et al. 2003), tlesiults are more qualitative than quan-
titative. These models have mainly been employed to hebrpret numerical results, and not to make
useful predictions about the dynamical behavior of theesystRecently, Cuk and Burns (2004) constructed
an empirical analytical theory, in which ad-hoc high-orgerturbative terms are added to the variational
equations. Comparisons with numerical simulations shotvatithe model, although empirical, was very
precise.

In the present paper we develop a new, high-order analyticadel for the secular (i.e. long-term)
dynamics of irregular satellites of the outer planets. alihh the aims are similar to the work of Cuk and
Burns (2004), the present model is built in a self-considiam. In Section 2, we present Kaula’s expansion
of the disturbing function for direct and retrograde orbltsSection 3, we construct the Hamiltonian system.
Our perturbation theory is described in Section 4. The ayagpover the mean anomalies and construction
of the secular dynamical system is described in Section 50 dpplications of our secular equations are
discussed. In Section 6, we use the equations to study thai Kegonance (Kozai 1962). In Section 7,
we calculate the precession frequencies of orbits of tlegidar satellites at giant planets. Conclusions are
given in Section 8.
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2. Kaula's Expansion of the Disturbing Function

We consider the restricted three-body problem comprisealsrhall satellite orbiting a planet of mass
mg and perturbed by the Sun with mags. Let+ be the instantaneous planetocentric position vector of the
satellite and"; that of the Sun. The disturbing potential function of theeBi¢’s planetocentric Keplerian

orbit is defined as: ) -
R=Gmy 1, (1)
|7 — 7“1| Ty

wherer andr, are the moduli of* andr1, respectively, and- is the gravitational constant. When the ratio
r/r1 is much smaller than unity (such as in the case of a planetdgflite), it is useful to expand® in

Legendre polynomials:
Gmy ~— <'r )l
R= — | P, 0), 2

whered is the angle betweefiand;. This expansion can be expressed in terms of the orbitaleiesrof
a satellite (Kaula 1961, 1962). For both prograde and redidmy satellite orbits, this is given by:

0o !

—n)!
= 3
R +n)! (3)
=2 n=0
1,1—2 -10-2
X Z Flnp(DFypp, (I1) Z Xy 2pfq X, 2p1+q1p1(61) cos 6,
p,p1=0 q,q1=—00
where

O0=(01-2p1+q)M; — (I =2p+q)M + (I = 2p1)w1 — (I — 2p)w + n (21 — ), 4)

anda = a/a;. Thek, function appears as a consequence of the passage from etjpbne trigono-
metric functions, and it is equal to unity far = 0 and equal to 2 for all other values of the index. The
satellite’'s orbital elements are given by its semimajosaxieccentricitye, inclination I with respect to an
invariant reference system (e.g., the Laplacian planegmamomalyM, argument of the pericenter, and
longitude of the ascending nodke We use the subscrigtto denote the orbital elements of the Sun in the
planetocentric reference frame.

The functionsF; ,, ,(1) are complicated functions of the inclinations. Accordingiiky and Dermott
(1999), these functions are:

—1)i—n —
Fipp(I) = (\/2_12!@ _(lpJ)r!n)! Z(_l)k < 21 k2p ) ( l_ip_ . ) gBlmn=2p=2k n—l+2p+2k ()
k

where the sum is limited t& € [max (0, —n — 2p), min (I — n,2] — 2p)]. The inclinations appear in
& = cos %I andn = sin %I.

The dependence on the eccentricities is given via the Hanm‘ﬁcientsX?’b, which can be defined
as:

a b
X b = €|C t Zyﬁkt s+u€ 257 (6)
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wheret = max(0,c¢ — b), v = max(0,b — ¢), and };‘1@78+u are the Newcomb operators which can be
determined via simple recurrence relations (see Hughes, I¥&mott and Murray 1999).

2.1. Expansion in Complex Variables

It will prove useful to translate the cosines in Eq. (3) tatlkeponential counterparts and to work with
complex coefficients. We begin introducing new indexes eefioy:

ih=1-2p+q €( 00)

io=101—2p+q € (—00,00) @
is =1 —2p e [-1,1]

i5 =1 —2py E[ l,l]

where the last two indexes only take odd (even) valuéssibdd (even). We also group the dependence on
the inclination and eccentricity of the Sun inside the caoddfits. This is useful to obtain a compressed ver-
sion of the expansion, and introduces no approximatioreedime planetary orbit will be assumed constant.

With this in mind, we can write

R = Gmlz Z Z Z Apnis(ar, I, er) Flapi, (1) ijg(e) cos 0, (8)

n=0 7,1,7,2—700 23 257—1

where
Qz’ilMl —i2M+’i5wl—’i3w+n(Ql—Q). (9)

We now pass from theos 6 to exponentials. The main advantage of this transformasdhat it allows
us to group inside the new coefficients the dependencewyitf?;. After a few algebraic calculations, we
obtain:

0o 00 l
R=GmiY d > Y Bi(a,hienw, Q) B (D) X50Re) BV, (10)

11,l2=—00 43,i4=—1

whereB; ;, are the new complex coefficients and we have used the notaftioa exp . The argument of
the periodic terms now read
1/} = ilMl + iQM + igw + i4Q. (11)

2.2. Separating Prograde and Retrograde Satellite Orbits

Functions F; ,, ,(I) in equation (5) are valid for any value df However, we note that for low-
inclination prograde orbits (i.el ~ 0), we have tha) < 1 and{ ~ 1. Conversely, for low-inclination
retrograde orbits (i.el ~ 7), we have thaf < 1 andn ~ 1. This property allows us to exparid ,, ,(1) as
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power series of or n depending on whether the satellite is retrograde or pragridr example, in the case
of retrograde orbits, and for any non-negative integeks we can write:

g = 11— M2 =3 oMt (12)
=0
where the coefficients have the following recurrence refati
— 9 1
oW =1 ; oW kit ;Jr ), (13)

This series is valid in the intervdl € [7/2, r]. For direct orbits, the expressions above acquire the form:

(2

o

Il
=)

nf =1 —n?)/? =

7

with the same coefficienté‘i(j) given by (13). This series is valid fdr € [0,7/2]. In the case of vertical
orbits (i.e.I = m/2) both expressions can be used.

Introducing (12) into (5) we can now determine new constaefffecientsg; ,, , . and write for retro-
grade orbits:

oo
ﬂ,n,p(I) = Z 9inpk gk (15)
k=0

The same procedure can also be undertaken for direct oyi®tding a power series in.

Finally, since most irregular satellites have eccentasibelow the limite, ~ 0.6667, we can use the
expansion of Hansen coefficients in power series of the ¢iiciéies. Thus, we can write:

X“b Zwabw e’ (16)

where the expressions fay, ; . ; can be easily obtained from the Newcomb operators. Noteathaalues
are zero forj < |c — b|; however, we will keep the general form for simplicity.

Introducing all these changes into the expressionifgior retrograde orbits we obtain:
R=Gm ) Z Yo Y Rijkivnig a'ect BYTIOMERM 0] (q7)
=2 7,1,22—*00 23,7,4—7l

WNEIe Ry ki1 iz,is,is
replaced by one in.

are the new complex coefficients. In the case of direct grthies power series if is

As a final comment, it is important to keep in mind certain gnies of the Legendre expansion of the
disturbing function. Compared to the Laplace version, daweries has the advantage of being convergent
for eccentricities belove. ~ 0.6667 (see Wintner 1941) and all values of the inclinations. THaeafe,
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is actually a function ofv (see Ferraz-Mello 1994), but it is practically unchangedafba < 0.1. If Bessel
functions are used instead of Newcomb operators, the negudkpressions could be used even in the case
of eccentricities close to unity. However, the Legendreagmgion has two drawbacks. On one hand, its rate
of convergence is very slow as function @f thus it is usually applied only to those cases where the rati
of semimajor axes is very small. Secondly, the literal egpi@n ofR is very complex and only a few terms
are usually included in models.

3. Hamiltonian Formulation

The Hamiltonian function for the dynamics of a satellitethie extended phase-space, can be written

as:
2
F= —% +niA — R(L, G, H, M,w,Q) (18)
whereu = Gmg andg is the gravitational constant . The mean-motion of the plédenoted by, and
A represents the canonical conjugate of time. The Delaunagniegal variables are written in terms of the

orbital elements of the satellite as:

L = \pa
G = LV1-e? (19)
H = Gcos(I)=G((2-1) =G - 2.

However, we will not explicitly introduce the transformatti (e, £) — (G, H) into (17) since it would lead
to unnecessary complications. We will then simply write ithemiltonian as:

= nlA + Z Z fl ikl Llejfk E\/f_l(llMlJrlz]Wﬁ*lngrMQ)‘ (20)
4,5,k 11,...04

Note that the first term in (18) has been included into the stifvis is an example of what is sometimes
referred to as ®oisson seriege.g. Henrard 1989), and it is characterized by a power sémi¢he subset
(L, e, &) and a Fourier series in the angles.

3.1. Operationson the Hamiltonian Expansion

In order to use Eg. (20) in a perturbation theory and consaisecular model for the evolution of the
irregular satellites, we must be able to perform operatmmsghe series, such as differentiation with respect
to the canonical variables. The angles pose no problem. &allexample, the derivative @t respect ta\/
will yield a series of the same type as (20) with new coeffitsen

M
ff,j,,ﬁ,llwu =V=1U fijkir s (21)

and similar expressions are also found for the remainindeang
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Derivatives with respect to the canonical momenta are miffreudt, and constitute a common problem
in this type of analytical work. While the perturbation etjoas are written in terms of partial derivatives
with respect to the canonical momeritaG, H, our Hamiltonian (20) is written i, e, £. If the expression
of R is not restricted to a small number of terms, the transfoionak(L,e,§) — R(L,G, H) would
yield very complicated expressions and we lose the origiw@bson form. Any posterior differentiation
or integration will complicate things even further, up to@m where we would necessarily have to adopt
approximations which would limit the validity of the model.

Using Eg. (20) we can write for retrograde orbits:

tpjgk . . . )
8(La€L€ ) — (Z _]) Lz_lejgk +] Lz—lej—2§k
O(Licick > , , >k . .
( 8€G£ ) - Z] 07(11/2)LZ_1€]+2n_2§k _ Z 5 CT(L—I/Q)LZ—1€]+27Z§]€ (22)
n=0 n=0
— k (=1/2) 7i—1 _j+2n ck—2
+chn Lile2ng
n=0
Lieigk e . :
o( a;{f ) _ Zg C(1/2) =1 gi+2ngh—2
n=0

whereCﬁl/Q) and Cﬁflm are given by equations (13). For direct orbits, the denestiare given by the
following expressions:

O(Lieink CN piel g cori—1_j—
% (i) L e 4 L2 (23)
i gk o0 > S
% B Zj C(l/Q)QiejJrQn,gnk B Z ﬁ 0(71/2)Li716j+2nnk + Z E C(*1/2)Li71€j+2nnk72
n=0 n=0 n=0
i,j.k > . )
n=0

Notice that these expressions are singular for circulaf@armlanar orbits. Introducing these derivatives into
our Hamiltonian, for retrograde orbits we obtain:

oF (L) 1ok (1 My +Hlo M +13w-+1492
Y il s Y
igde Liols
oF (@) I jck 11y M+ M+130-+140
oG S>> Ak Lelgk pYTHhMtM o) (24)
i,5,k 11,504
oF (H) 1ok (14 My +Hlo M +13w-+1492
oH Do D fighin DR BYTHMHEM o)
igd Liols

where the new coefficients are given by

L o .
fi(,jy)k,h,...,u = (—J+1) firrgkb,ts + (G +2) firrj+2k0,



Nmaz+1 —
G . -
fi(’j}“’llv---@ -7 Z (G —2n+2) CS2 fiitjoontomin, s — Z ) CUY fit jmonbta, s
"0 n=0
Nmazx k + 2 -
+ Z % 07(1 1/2)fi+1,j72n,k’+2,ll,---714 (25)
n=0
H Nmax (k+ 2) B
fi(7j712:7l17"'7l4 = Z T Cfl 1/2)fl+17]72n7k+271177l4

n=0

with n,,., = int(j/2). The expressions for direct orbits are analogous. The aiffigrence is a change of
sign forf(H)

Zvj>kvll"",l4.

The main importance of this procedure is that it allows us mal fa self-similar expression for all
the operations involved in the perturbation equations. theowords, the original Hamiltonian and its
derivatives, integrals, products, etc., have the samdifurad form. The corresponding series only differ in
values of the the coefficients, which are not dependent oarttital elements of the satellite. The advantage
of this method is that it allows us to iterate the Hori’s pdstation theory to a high order.

3.2. Fundamental Frequencies

As a first application of method, we determine the fundanidréguencies in each canonical angle.
We restrictF’ to its truncated form¥’, defined as all those terms that do not depend explicitly enstt
(M,w, ). From Hamilton’s equations we can write:

_ OF' _ _OF'

vy, =M oL IZN :Ml oA (26)
. OF _ o OF

YE =Y 8a YH =T o

where F’ includes only those terms ifi that satisfyl; = I, = I3 = I, = 0. It can easily be seen that
va = ny is simply the mean-motion of the planet, is the orbital frequency of the satellite, and, v are
the frequencies of variation of the argument of pericenter ascending node, respectively. For example,
v is given by:
Vg = Z fi(,%,o,o,o,o Liel¢k @7)
2,5,k
and similar expressions hold to the other frequencies.

The continuous curves in Figure 1 represent the values drriéncies, as function of the semimajor
axis, for Jovian retrograde satellites with= 0.3 and/ = 170 deg. Althoughv; andv, are much larger
thanvg andvy for small values of the semimajor axis, for distant moongtake frequencies are roughly
of the same order. In particular, far = 0.22 AU (corresponding tox 0.7Ry;;), the orbital frequency
of the satellite is only about 3 times larger thag, and this last value is less than twice and only
about four times/y. Thus, contrary to what is found other non-resonant thiedytsystems (for example,
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Fig. 1.— Fundamental frequencies of each canonical angéefaisction of semimajor axis of the satellite
that hase = 0.3 and = 170 deg. The satellite orbits a Jupiter-like planet with mass= 10~3m, that
was placed on the current osculating orbit of Jupiter. Gmuaus curves represent the values obtained with
the complete truncated secular Hamiltonigh Broken curves show results determined with our Kerrigl
(see equations (29)-(30)).

in the asteroid belt), for the irregular satellites we findigngicant region of the phase space where all
the fundamental frequencies are roughly of the same orddrilee separation between “short-period” and
“long-period” degrees of freedom becomes blurred. As aequsnce, seemingly unimportant terms such
as the evection (Delaunay, 1860, 1867) have important ibotitsns in the dynamics of distant planetary
satellites.

4. Perturbation Theory

To study the secular dynamics of the irregular satellites, usual practice to eliminate all terms which
depend explicitly on both mean anomalies. This is performéti an averaging process obtained from
the application of a chosen perturbation theory. Analytioarks (such as Saha and Tremaine 1993) usually
adopt a first-order averaging in the mean anomalies, whinplgicorresponds a straightforward elimination
of all periodic terms inM, M. However, it is well known that some of the periodic termsnatiated by
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this approximation (such as, e.g., the evection term) hmréficant effects on the long-term evolution of
distant satellites. In Lunar theories, the importance chdong-period terms has been recognized since the
times of Delaunay (see also Touma and Wisdom 1998), and dthaivi is necessary to go beyond a first-
order averaging to have an adequate representation of téaselynamics. In recent years, a humber of
second-order secular theories have appeared in theliteydor both the restricted and planetary three-body
problems (e.g. Milani and Knezevit 1994, Lee and Peal&2C00k and Burns 2004).

Most of these second-order models were based on the cahtirecaies of Von Zeipel (1916) or Hori
(1966), although sometimes a simpler variation of constevais adopted (Cuk and Burns 2004). In all cases,
however, the application of the perturbation theory fokmlithree main stepgi) The ratio of semimajor
axesc or, alternatively, the ratio of mean-motions /n was usually chosen as the “small parameter” of the
perturbation, around which the theory was constructed. ZEne-order term corresponds to the kerr(@).
The two-body contribution (including th& term) was chosen as the kernel (e.g. unperturbed Hamitionia
function Fy). The unperturbed system was thus degenerate and the fentiEnfrequenciess and vy
are zero. An expansion of the disturbing function up to ordryielded what is called the quadrupole
approximation, while terms up @® give the so-called octupole approximation. The evectiom tappears
in o3-terms. (iii) As an initial step in the model, a first order averaging wasaty performed on the mean
anomaly of the satellite (i.e. elimination @ff). The second-order theory was only constructed for the
remaining three-degree of freedom system.

The choice offy = —u2?/2L? + niA as the kernel has historical reasons and is a very good approx
mation for the secular dynamics of main belt asteroids (ditani and KneZzevi¢ 1994), Lunar theories (e.qg.
Delaunay 18860, 1861, Touma and Wisdom 1998), or regulallises of the outer planets. In the example
of the asteroidsys andvy are typically several orders of magnitude smaller than théta frequencies of
the bodies. Thus considering these quantities equal toizavell justified as a first approximation. How-
ever, for irregular satellites of the Jovian planets, weehseen in Figure 1 that all frequencies may acquire
values of similar magnitudes. In such a case, the choiceeofwb-body Hamiltonian as the kernel is no
longer a good option. Similarly, first-order averaging o¥éris also not a good approximation. Once again,
this assumes very different timescales for the variatiothefdifferent degrees of freedom, a characteristic
which is not necessarily correct for irregular satellites.

We thus need to define a new unperturbed Hamiltonian and @®@\alihew perturbation approach.
To define the new unperturbed Hamiltonian, we incorporate iy the most important terms ok that
contribute tov; andvy. The more terms we include, the better our approximatiohlwel However, these
new terms must not depend on the angles, since we still wishaiatain the integrability of{. We will
then divide the complete Hamiltonidn as the sum of a (new) unperturbed pBstplus a perturbatiorf’ :

F(L,A,G,H, M, M,,w,Q) = Fy(L,A\,G, H) + eF,(L,A, G, H, M, M;,w,Q) (28)
where now
2
Fo(L,A, G, H) = —% +mA — Ro(L, A, G, H) (29)

Fl(L,A,G,H,M,Ml,w,Q) = —Rl(L,A,G,H,M,Ml,w,Q)
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and R, contains the lowest-degree terms (in semimajor axis, egcigy and inclination) of the disturbing
function which do not depend explicitly on any of the anglesplicitly, we will choose:

~Ro(L,A, G, H) = f10000.00 L* + f12000.00 L*€* + f1020000 L€ (30)

and the perturbatioi; (i.e. R1) contains the remaining terms. Notice that the “small patami ¢ invoked

to separatd; from Fy is merely formal, and the real dynamical system correspoads= 1. The actual
small parameter is given biy:/a1)?, which is the difference between the lowest-order termgjiand F; .
However, some terms of ordési/a;)? have been brought to the Kernel, and higher order of the sajoim
axes ratio also inhabif. For this reason, wea/a;)? is not actually a separator between Kernel and
perturbation, and we introduce the formal parametter play this role. It will also help us keep track of the
different order in Hori’s perturbation series.

The fundamental frequencies obtained from the Kefjedre given by:

OF _
VLo = a—[f) = WL 4+ (41000000 + 2f1200000) L + 21200000 L*¢® +4f1020000 L°€
OF
OF 1 _
vGo = 8—63 = —2f472’070707070 L3(1 — 62)1/2 + 5f4,0,2,0,0,0,0 L3(1 - 262)(1 - 62) 1/2
OFy 1 3 2\—1/2
Vo= F = i§f4,0,2,0,0,0,0 L°(1—e%)

In Figure 1 we present two different estimations of the fundatal frequencies. Broken lines correspond to
the values obtained from our neky, while continuous curves show the results from a first-oad@raging

of the complete integrable Hamiltonian function, inclugli@rms up to fifth-degree ifn, e, ). The good
gualitative agreement between both sets of curves makesi@agssary to consider additional terms in the
Kernel.

We can now apply Hori’s perturbation method to eliminaterttean anomalies/, A1, from our Hamil-
tonian. The idea then is to search for a canonical transfiomadefined by a Lie-type generating function

o
B =Y &Bi(L*,A*,G*, H*, M*, M, w*, Q") (32)
=1
to new (star) variables such that the new Hamiltonian famcti
w .
F* =) &F(L* A, G", H*,w*, Q") (33)
1=0

is independent of the paiv/*, M{". In doing this, we will have an integrable approximation loé tsecular
system.

Up to third order ing, the relationship between the new secular Hamiltoniang#reerating function
and the old Hamiltonian, is given by:

o= K
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" 1
Fy = F2+{F0>B2}+{FIaBl}+§{{F0>Bl}>Bl} (34)

N 1
Fy = F3+{F0>B3}+{F1,BQ}+{F2731}+5{{F1,Bl}731}

¥ ARy, Buy, Ba) + ({0, Bo} Bi} + ¢ ({{Fo, Bu), B, Bu)

where both the right and left hand terms must be written inrtee variables, and , } is the Poisson
bracket. For two arbitrary analytical functiogsandh, it is given by:

(g.h} = 3f89_398f+8f39_393f+
0= \om+orLr ~ oM~ oL OM; OA* DM} OA*
+<3f dg g 3f>+<3f dg g 3f>

(39)

dw* IG*  dw* DG o0 OH* OO OH*
The first (i.e. zero order) equation is trivial; the rest @nttwo unknowns: the generating functiéh and

the new Hamiltoniar¥*. ChoosingF;" to be independent of the mean anomalies, we can then use each
equation to determine correspondifyg. This procedure is detailed in the following section.

4.1. TheGenerating Function

Even though the algebraic system (34) contains an infinitelran of equations, each can be solved in
terms of the previous orders. For the first onwards, we cateveach equation as:

F;; :{FOaBn}+q)n(F07---7anBlan71)7 (36)

where function®,, is assumed to be known from the solution of the previous émumt At each step, we
will determine B,, such thatF* does not depend explicitly on any angle. We begin by separ4tj, into
two parts:

by = <(I)H>M,Ml + [®n]]\/[,1»11 (37)

where the first sum includes all terms that do not contain taamanomalies explicitly, and the second sum
contains the remaining terms. Introducing this expressitm(36), we can solve for botR;¥ and B,, simply
choosing:

Fyo= <(I)H>M,Ml (38)
_{F07Bn} = [(I)n]

M, My *

Although the expression for the new Hamiltonian is explitiie generating function needs further work.
SinceFy(L*, A*, G*, H*) is only dependent on the momenta, the Poisson bracket tfagdsrn:
0B, 0B 0B 0B,

oar T Naarr T TV e

—{Fo, Bn} =1 (39)
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Assuming thatB,, (and thereforeb,,) have a Poisson form, we can write:

—{Fy,B,} = V-1 Z Z B, 1oy (hvp +lovs +lsvg + L) Lee™ (40)
’] kll
X EF(llMl +l2M*+l3w +l4Q*)’
wheree* and¢™ are defined from the canonio@f’, H* simply inverting the transformations (20). Therefore,
we finally obtain from (39):

Ba=) 2

7]kl17 7

_Jq (n)
12 45,k 01,0l L*ie*jg*k: FV L0 M+l M 130" +14Q%) (41)
l1VL + lovp + l3vg + lyvy

From our series expansions for the frequencies, we cantestiie denominator as:
D117127l37l4(L*) =hvp+lbvy+lsvg+luvg=lono+ 1 p L*_g + dy L*g (42)

where the coefficiend, is given by:

1
dy = 4l f4,0,0,0,0,0,0 + 2(l1 —13) f4,2,0,0,0,00 + = (l3+l4)f4020000 (43)

Thus, we can rewrite the generating function as:

anz Z \/_1 Jkll, la

D L*
i, Pniisn(L7)

Lrie *]g*k EV-L M+l M +l3w* +1492") (44)

The dependence db;, ;, ;, 1, With the semimajor axis is not in the Poisson series formsTuises a
problem because we wish to retain the self-similarity ofeadbansions to simplify the calculations of the
perturbations series to high orders. To deal with this prhlwe expand the inverse of the denominator via
alocal Taylor series iiL*, e*, £*) around a reference valyé;, 0, 0). Concentrating just on the dependence
in L* (the expansions ia*, £* are analogous) we can write:

L _ pO (1) £ @ 2
D@~ Pintadats T Piagsil + Dy L7 - (45)

where the coefficients are given by:

dD 1 d?D dD \*
D(O) — p-lyp-2p( 22 _ D_QL a D312
l1,02,13,l4 o T Lo dL* L 90 dL*2 L + Dy Lo dL* ) ;.
2
(1) _ _o( dD 5 5 . (dD
D11J2,l3,l4 - _DO <dL*> + D LO( ) 2DO LS(dL* L (46)
O 0

) 1 __,(dD dD
D11J2,l3,l4 - §D0 <dL*2 0 dL*
Lg
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Fig. 2.— Comparison between the inverself ;, ;. ;, (L) (continuous lines) and the second-order Taylor
expansion in(L, e, &) (broken lines), as a function of the semimajor axis. Theresfee valuel, was
calculated consideringg = 0.1 AU. (@) Iy = 1, 1o = 1,13 =114, = 1. (b) ], = 1,1 = —1, 3 = 4,

l4 = —4. In both cases, the eccentricity was choses 0.2 and the inclination/ = 10°. Note that the
approximation is good locally neap = 0.1 AU.

with Dy = Dy, 1,141, (L§), and the derivatives are also evaluated at this value. doting the expansion
(45) into B,,, we finally obtain the generating function as:

Bn:Z Z B(n) L*ie*jﬁ*k Eﬁ(llklf+le*+l3w*+l4Q*)’ (47)

i7j7k7llv"'7l4
ivjvk 117"'714

where the new coefficients, up to second degrgd.in— L), are given by:

ikl la 4 Plilala s =15,k la 012, 0,04 =2, k01 la Pl 2 3,0 |
(48)
An example of the precision of this approximation of the daimator of the generating function is shown
in Figure 2.

4.2. The Second-Order Secular Hamiltonian

We now have all the tools to determine the secular funcid.*, A*, G*, H*) up to any given order in
e. In this subsection we will show the explicit expressionstfie second-order Hamiltonialyy + F}" + F3.
It has already been mentioned that the zero-order fundtipns equal to the original kernetp, simply
replacing the old variables by the new. For the first ordeuagigns (35) and (37) show thét, = F}, so
from (36) and (41) we have:

7 | ¢xk o/ —1(l3w* +14Q*
Ff = Y fijkoois Legtpy 1t (49)
1,9,k 13,la
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B, = }: }: BW Lrieigrk FVT M+l M 30" +14Q%)
L= i3, 01l ’

ik 11,ela
For the second order, the expression become slightly maorghkoated:
1
b, :F2+{F1,Bl}+5{{F0,B1},Bl}. (50)

However, we do have two advantages. First, due to our chdigerturbation, we have thdt, = 0. Second,
from the first-order Hori equation, it can be seen tha§, B, } = F; — F}. Introducing both into (50), we
obtain: .

®2 = S{(F7 + 1), B} (51)

To calculated, we have to differentiaté3; with respect to the momenta. This operation is straightfor-
ward and analogous to similar derivatives performed iniSe@.1, since we have kept invariant the Poisson
form of each function. Finally, the second-order Hamiltomis simply:

Fy = (®). (52)

4.3. TheThird-Order Secular Hamiltonian

As we shall see in our comparisons with numerical integrati@ second-order theory is not sufficient
to obtain a precise model for secular dynamics. Thereforemwst calculate the third-order contributions.
The expression foFy (see equation (35)) is given by:

F5 = {Fy, Bs} + ®3(Fy,..., Fs3, By, Ba), (53)
where:
P3 = F3+{F2,B1}+{F1,B2}+%{{Fl,Bl},Bl} (54)
+ S{{Fo, Bi) Bob + 5{{Fo, Ba}, B} + G {{Fo, Bu}, Bu), Bl

Once again, we are able to use some simplifications. Firshave defined’s, = F3 = 0, thus the first two
sums are zero. Second, from the Hori equations of first twerstdve know that:

{Fo,Bi} = Ff -1 (55)
1,
{Fo, Ba} = Fy — 5{( I+ F1), Bi}.

Thus, the expression fdrs simplifies to:

By = %{(Fl* + FY), By} + 1—12{{(F1 — F),B1}, By} + %{F;>Bl}' (56)
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Finally, since we are only interested in the secular thideo Hamiltonian, and we will not extend our
model beyond this order, we only need the averaged valués.of hus,

Ff = S0 BaY) + s (R — F), Bi, B, (57)

Although we discuss here the Hori series truncated at ordeurdorocedure allows a straightforward exten-
sion to higher orders. The self-similarity of the expreasi@llow this extension with no difficulty, except
limits dictated by the computer resources (e.g. CPU and Réditictions).

5. The Secular Hamiltonian

We obtain a new Hamiltonian functiol* = Fy + F" + F5 + F3 as a function of the new variables
(L*,G*, H*,w*,Q*). We call these “mean elements”, since they are averagedtbgenean anomalies.
Since the secular Hamiltonian does not depend explicitipbrthe quantityL* is a constant of motion of
the complete system, and gives fveper semimajor axis. The relationship between the starred bimsa
and the original elements is also given by Hori’s transfdiama DenotingB = B; + B, as the complete
(up to second-order) generating function, we can write:

. OB _ ... OB

b=trar 0 M=Yagn
. OB ., OB

G=G +8w* ; w=wt - oo (58)
. OB ., OB

H=H +8Q* ; Q—Q—@7

where it is important to remember th&tis a function of the starred variables. Thus, if we wish teed@ine
the mean elements from their osculating counterparts,tinsa(58) must be solved iteratively.

We can now write the the equations of motion for the satellidde have two choices: either use the
Lagrange planetary equations in orbital elements, or thailian equations. Both are equivalent, although
the latter have the advantage of allowing further use ofypleation methods.

Recalling thatZ* is a constant of motion, and thus a parameter of the Hamgtgnive have a two
degree of freedom system characterizedty= F*(G*, H*,w*,Q*; L*). The equations of motion are:

dG*  OF* dw* oF*
— . = — 59
dt ow* ’ dt oG* (59)

dH*  OF* _ asy  OF”

dt — 00* ’ dt — OH*
where the Hamiltonian is given by:
F* — Z Z Si,j,k,lg,h;L*ie*jg*kE\/jl(lsw*JrMQ*), (60)
i,Gok L3l

This system can be solved numerically, and its results comgpwith an exact simulation of Newton’s
equations. We have chosen a fictitious Jovian satellite witfal conditions given bya = 0.15 AU,
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Fig. 3.— Evolution of a fictitious Jovian satellite with theitial orbit defined bya = 0.15 AU, e = 0.37
and/ = 150 degrees. All initial angular variables were taken equakimz The satellite orbits Jupiter-mass
planet is assumed to move in a circular orbit around the S&readU. Grey dots correspond to the results of
an exact numerical simulation (including short-periodrtg), while continuous black lines show the secular
evolution according to our model equations (59).

e =0.37,1 = 150° andM = M; = w = = 0. Jupiter is assumed to move in a circular orbit. Figure 3
shows, in gray dots, the orbital evolution of this body agdained with an exact numerical simulation. In
order to apply our secular model, we used the Hori’s tramsétion to pass from the osculating elements to
the mean variables. Once the starred variables were detedmnive then solved equations (59) numerically.
The results are shown in the figure with black continuousslinge can see a very good agreement with the
exact evolution, even though we have considered a highlgregc and inclined retrograde orbit with large
semimajor axis. The periods of oscillation of both anglesaso well reproduced. Therefore, our secular
Hamiltonian (60) contains all important features of theusacdynamics.
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Fig. 4.— Level curves off;, = const. where Fy, defined in (61), for semimajor axis = 0.1 AU and
six different values of{. Each is characterized by the maximum value of the inclamati.e. fore = 0).
Perturber is Jupiter in a circular orbit with current masd aamimajor axis.

6. Thelidov-Kozai Hamiltonian

The secular system can be further simplified by averaging tvelongitude of the node. This can be
performed in the same manner as the previous averaginguglthwe have found that it is usually not nec-
essary to go beyond the first order. We thus search for a neantzali transformatiofG*, H*, w*, Q0*) —
(G, H**,w**, Q**) such that the new Hamiltonian (which we will denote By) does not depend explic-
itly on ©2**. This resulting function is given by:

FL(G,wi L, H) =Y K (L, H)e'¢/ BV (61)
il
where, for simplicity of notation, we have eliminated theidte stars in all the variable. Note that (G, w; L, H)
is a single degree of freedom system, and hotéind H are constant of motions. From equations (20) we



— 19—

e_max

Fig. 5.— Fixed points of, for retrograde orbits, as function of the maximum ecceitytiand fora = 0.1
AU. Stable solutions are shown by continuous lines, whitgkén lines correspond to unstable fixed points.

see that:

EZ\/1—€2COS]. (62)

L
Since the left hand side is constant throughout the orbit@iléion, this means that both the eccentricity and
inclination are coupled. As the orbit becomes more incljnedeccentricity decreases, aaavill reach its
maximum value for the minimum value éf(or = — I for retrograde orbits).

Fy, is a high-order version (i) of what is usually referred to as the “Kozai Hamiltoniah” The
first-order approximation has been extensively studiedhéngast, both for solar system bodies (e.g. Kozai
1962, Thomas and Morbidelli 1996) and planetary satel(iteg. Lidov 1961, Nesvorny et al. 2003). Figure
4 shows the level curves of constant valuegpffor retrograde orbits and four different valuesi@t Each
plot is characterized by the value of the maximum value ofitloénation (i.e. I,,,:), Which is given by

equation (62) foe = 0:
H
I ez = arccos <f> (63)

Jupiter was chosen as the perturber, with current mass anidnsgor axis but in a circular orbit.

1As recalled recently in Michtchenko et al. (2005), the dyiwhphenomena associated to this one degree-of-freedstarsy
including the so called Kozai resonance, was first discal/byelidov (1961)
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Fig. 6.— Bifurcation value of the proper inclination for thélov-Kozai Hamiltonian, as function of the
proper semimajor axis and initial circular orbits. Result fetrograde motion are presented on the left-
hand plot, while those for direct orbits are shown on thetriggnd graph. Dotted lines are results from the
“classical” low-order Lidov-Kozai Hamiltonian. Continuse lines show results from our model. Full circles
correspond to data from numerical integrations.

We can see the well-known structure of the phase plane. ovddues ofe,,,.. (i.e. low eccentricities
and quasi-planar orbits) the level curves are distortegsals around the center, which corresponds to a
stable fixed point. Fog,,., =~ 0.58, the origin becomes unstable and bifurcates into two nellestaoints
with w = +90°. A separatrix appears, dividing the phase plane into a negfccirculatory motion (now
restricted to high values efsin w) and two libration islands. This structure is known as the#&oesonance.

Figure 5 shows the fixed points of the Hamiltonian (retrogradbits), as well as their stability as
function ofe,,,,.. Stable solutions are shown by continuous lines, whileabistfixed points are identified
by broken curves. The bifurcation is clearly visible g5, ~ 0.58, and the eccentricity of the center of
the Lidov-Kozai resonance tends towards unity with the ealfe, ..

The “classical” expression for the Lidov-Kozai found in mgrapers (e.g. Kinoshita and Nakai 1999,
Carruba et al. 2002, Nesvorny et al. 2003) is given by:

monia3

= 60mo + 1) ((2 +3e2)(3cos® I} — 1) + 15e¥ sin? I cos 2w1> , (64)

and is obtained retaining only the lowest order terms in sgor axis, eccentricity and inclination, and
performing the averaging over the mean anomalies only todider. The bifurcation points of this Hamil-
tonian are independent of the semimajor axis, and directidhe orbital motion of the satellite. However,
the empirical model of Cuk and Burns (2004) shows that higinder perturbations introduce a dependence
of e;nqz With the semimajor axis.

Figure 6 shows the application of our model. Result for iggtade orbits are presented on the left-
hand plot, while those for direct orbits are shown on thetriggnd graph. Both show the corresponding
values of the inclination for which the libration zone firgip@ars for initially circular orbits. Dotted lines
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are results from the “classical” low-order Lidov-Kozai H#ionian. Continuous lines show results from

our model. Full circles correspond to data from numericé¢gnations. Even for large semimajor axes the
overall agreement is very good, with differences which lsaexceed~ 0.5 degrees. However, we do note

a tendency for the model to underestimate (overestimagntimerical values by for retrograde (direct)

motion.

7. Secular Frequencies of Fictitious Satellites

A very important application of a secular theory for the guéar satellites of the outer planets involves
the determination of the frequencies of oscillation of btte argument of pericenter (i.es;) and the
longitude of the ascending node (i.ey). Having expression for these quantities (explicit or otise)
as function of the initial orbital elements, we can then cledor the regions of secular resonances with
the fundamental frequencies of the outer planets and, ituagfuvork, construct a model for each of these
secular commensurabilities.

We have developed two different methods for the calculatidhe secular frequencies. Each is detailed
below:

e Full Averaging The elimination of the angular variables described in Bact is extended to also
include the secular anglasand(2. This direct elimination of the argument of pericenter isigglent
to assuming that the origifiz cos w, G'sinw) is an elliptic fixed point and, therefore, the angle
circulates. In other words, we assume that we are far fronhithev-Kozai resonance. Since the final
expression depends only on the momenta, the temporal enohitthe starred variables are given by:

*

L*(t) = const. ; M*(t) =vp-t + M where vp» = oL const.
G*(t) = const. ; wW(t) =vgt+ wj where vg- = G const. (65)
H*(t) = const. ; Q'(t) =vpt+Q; where vy~ = ey const.

and with the total Hamiltoniad™ = Fy + F} + Fy 4 F3. Itis clear that(L*, G*, H*) are integrals

of motion of this approximate model, and the correspondingles change linearly with time. The
values ofvy«,vg«,vg+ are sometimes referred to as the proper frequencies of tteray Finally,
applying the transformation from canonical momenta to tatbeélements yields constant values of
(a*,e*, I*) which constitute a set of proper orbital elements of eachtswil. Although there are
several different definitions of proper elements, the presme has the advantage of representing
the averaged temporal values of each orbital element,adsté (for example) their maximum of
minimum for given values of the angular variables.

Equations (65) and (58) have three important applicatiist, from the initial conditions given in
osculating (i.e. non-starred) variables, we can solveetteggiations iteratively to obtain the proper
elements(a*, e*, I*) and the proper frequencies. Second, from these proper etsmee can then
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Fig. 7.— Numerical proper elements (filled circles) and gtiedl values obtained with a full averaging
(continuous lines), as function of the initial eccentgicitOther initial orbital values were taken equal to
aini = 0.1 AU, I;,; = 40 deg andv;,; = Q;,; = 0. Recall thats = sin (1/2)

deduce the maximum and minimum value of the original osmgatlements, or their value for any
given set of the angles. This allows us to transform from oeféniion of proper element to any
other, thus simplifying a comparison with other works, esaky those numerical in nature. Finally,
these solutions represent the secular dynamics of themsyatel are valid as long as we are not in the
vicinity of any secular (or Lidov-Kozai) resonance.

e Partial Averaging & Lidov-Kozai If the eccentricity and/or inclination of the satelliteviery large,
the structure of the secular phase plane defined by the Lid@aai resonance cannot be neglected,
and the full averaging yields imprecise results. In suchsecave must limit the averaging in Section
4 to the mean anomalies, and solve the resulting Lidov-Kdzaniltonian in full.

7.1. Comparisonswith Numerical Integrations

To test both these approaches, we have integrated 1452tekitas for10° years. The particles were
placed around a Jupiter-like planet on a circular orbit witk 5.2 AU. The mass of the planet was assumed
to be10~2 that of the Sun. The satellite orbits were chosen within tllewing intervals:a = 0.05 — 0.15
AU, e =0—0.7, I = 0 — 50 degrees (for direct orbits) and= 130 — 180 degrees for the retrograde case.
The initial longitudes were assumed to be zero. The iniwafiguration was such that the Sun, the planet
and the satellite are on the x-axis, and the satellite wasepéricenter and the ascending node of its orbit.

The results of the numerical integrations were Fourier yaead using 16384 points separated by 5
years, yielding a total time span of 81920 years. Due to th@lusonfusion about the definition of the
longitude of pericenter for retrograde orbits, we detemmirthe frequencies of the nodal longitude and
the argument of the pericenter instead. The argument of ¢hegnterw is the angle between node and
pericenter, and is always positive by definition. Thus,= 2 + w for prograde orbits andvc = Q —
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Fig. 8.— Frequencies of the pericentric argumentand of the node; for fictitious Jovian direct satellites.
Left: Frequencies as a function of the initial eccentricity, dgy; = 0.1 AU and I;,,; = 10 deg. Right:
Frequencies as a function of the initial inclination far,; = 0.1 AU and e;;,; = 0.28. Numerical data

is presented as filled circles, while the analytical resales shown in lines. The dotted lines show the
frequencies obtained from the first-order model; dasheel l@presents the second-order model, and the
continuous line the third-order. On the right-hand plotsayglines correspond to results obtained via a
partial averaging (over the mean anomalies) and a semi-ncathsolution of the Lidov-Kozai Hamiltonian.

w for retrograde orbits. The proper eccentricities and irations were estimated as the largest Fourier-
term amplitude inNe cos w, esinw) and in(1 cos €2, I sin 2), using the Fourier method by Sidlichovsky and
Nesvorny (1987). The proper semimajor axis was take equtd mean value over the total integration time
span.

Figure 7 shows an example of the estimation of proper orblehents. Filled circles are the numerical
results from our simulations, while the continuous lines tre analytical values calculated from our full
averaged third-order model. We can see a very good agreeevemt though the definition of the numerical
and analytical proper elements is not exactly the same.duargi8 we show the calculations of the frequen-
cies of the pericentric distance (i.e¢) and of the ascending node (i.2y) for a series of fictitious direct
Jovian satellites. As mentioned in Cuk and Burns (2004) &s® Saha and Tremaine 1993) in the case of
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Fig. 9.— Frequencies of the pericentric argumeatand of the node/y for fictitious Jovian retrograde
satellites.L eft: Frequencies as a function of the initial eccentricity, dgy; = 0.1 AU and I;,,; = 140 deg.
Right: Same as left plots, but far;,,; = 0.15 AU and I;,,; = 150 deg. The meaning of the different types
of curves is the same as for the previous figure.

vg We note a big difference between the first-order and secoder@veraging. For low inclinations the
nodal rate can be successfully approximated by low-ordetisos.

The right-hand plots of Figure 8, especially for high inalilons, show the importance of the Lidov-
Kozai resonance. Although none of these fictitious satsliitre actually in a-libration, the change in the
topology of the phase plane makes the full averaging muctenmoprecise than a correct treatment of the
Lidov-Kozai Hamiltonian.

Figure 9 shows similar results, but now for retrograde arhaiith high inclinations with respect to the
invariant plane. Recall also that since the initial ecdeityris taken as the value effor w = 0, this initial
value actually corresponds to the minimum eccentricityhef orbit. Thus, the mean and maximum values
attained by this orbital element throughout its evolutisractually much higher. On the right-hand side,
corresponding to initial semimajor axis equaldg,; = 0.15 AU, the second-order full averaging yields
frequencies which appear outside the range of the grapbsararthus completely unreliable.
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Fig. 10.— Numerical simulation (gray) versus third-ordecslar model (black) showing the orbital evolu-
tion of the satellites Pasiphae and S/2003 J20, consid#ranglanet in a circular and planar orbit.

7.2. Application to Real Satellites

As a final test, we apply our model to two particularly difficahses: Pasiphae and Nereid. The first
is an irregular satellite of Jupiter with high inclinationdhlarge eccentricity. The second is the well known
Neptune’s moon which moves in a nearly planar, highly eceeotbit. The initial values of the semimajor
axis, eccentricity and inclination adopted for our studyrevas follows. For Pasiphae: = 0.156 AU,

e = 0.379 and/ = 140.1 degrees. For Nereid, = 0.037 AU, e = 0.75 andl = 5.04 degrees. In both
cases, the perturber was assumed to move in a planar anthcinchit.

Figure 10 shows the evolution of the eccentricity and iratiion for a few periods of the secular angles.
Left hand plots correspond to Pasiphae, while the rightdigraphs show results for the recently discovered
Jovian satellite S/2003 J20. In gray we present the orb#alation obtained from an exact numerical
integration of the three-body problem. In black we show #sults of the secular model. Note that in both
cases the agreement is very good, not only with regards tireqaencies of the secular angles, but also in
the amplitudes of oscillation. For S/2003 J20 a small dig@ney is noted for the secular frequencies, of
the order ofl %; however this satellite has a large semimajor axis andriatibn. Moreover, this particular
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Fig. 11.— Jovian satellite S/2003 J20: temporal evolutibthe argument of pericenter (left) and longitude
of the ascending node (right). Grey lines correspond toctinemerical simulations while black indicate
the results of our third-order secular model. Note the tibraof w around90 degrees.

body is located deep inside the Lidov-Kozai resonance. guifei 11 shows the evolution of the argument
of the pericenter (left) and longitude of the ascending noidgat). Grey curves show the results of a direct
numerical simulations, while our analytical results areggnted in black. The libration af around90
degrees is very well reproduces, both in amplitude and gearimscillation.

8. Conclusions

We have described here a new high-order analytical modethirsecular (i.e. long-term) orbital
evolution of planetary satellites. The model is based orgh-brder Legendre expansion of the disturbing
Hamiltonian and a third-order Hori perturbation theory. this paper we have included all terms in the
Hamiltonian up to fifth-order im; /az, e; andn (or &).

The model is valid for any inclination (prograde or retradgaand eccentricities below 0.67. Practi-
cally all known irregular satellites of the outer planetswithin this convergence limit. The only exceptions
are Pasiphae, S/2000 S4 and Setebos (all with. ~ 0.71) and Nereid §,,.. ~ 0.75). However, as has
been shown above, even in these cases the precision of ithetber truncated series is very good.

Comparisons with exact numerical integrations have shbwanhthe model yields accurate results even
for high eccentricities and inclinations, and large setama of a satellite from the parent planet. We
have used this model to briefly analyze the phase space ini¢hety of the irregular satellites of the
outer planets. We found that the Kozai resonance occursogtgssively larger (proper) inclinations with
increasing separation of the satellite from the parentgilawWe also calculated the precession frequencies
of orbits of the irregular satellites at Jupiter, These lsswill be particularly useful for determining the
locations and strengths of secular resonances in the spaapied by distant satellite orbits.
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