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Abstract. The wavelet analysis method applied to study a res-
onant dynamical system gives sufficiently precise information
about temporal evolution of its independent frequencies. Using
the special basis functions set which automatically changes its
size and position with respect to frequency and time, wavelet
transform allows the study of both weakly and strongly chaotic
behavior.
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1. Introduction

It is known that, depending on initial conditions, the resonant
asteroidal problem may have both regular and chaotic solutions.
The Fourier transform (FT) methods can be applied with great
success to describe the regular behavior of the dynamical sys-
tem (Michtchenko & Ferraz-Mello 1995). By means of Fourier
transform, signal x(t) is generally described as the sum of an
infinite set of sine functions with infinite duration:

o(t) = f wX(f)e*“'f td f, (1)

where X{(f) is the frequency spectrum of the signal. The ba-
sis of Fourier transform consists of harmonic functions that are
completely localized in frequency but completely unlocalized
in time. Therefore, the spectral composition of the regular mo-
tion, when the independent frequencies are constant in time, is
uniquely defined by the Fourier transform.

In the case of chaotic motion, the independent frequen-
cies of the dynamical system vary in time, and FT is, in gen-
eral, of limited use since it does not describe the time depen-
dence of the frequency components. In the last years, Laskar
(1990,1993a,1993b) proposed to investigate the chaotic behav-
ior of a dynamical system by analysing the temporal evolution
of its fundamental frequencies. The temporal evolution of the
independent frequencies of the conservative dynamical system
implies a diffusion of the orbit in phase space. Thus, for the
quantitative analysis of the chaotic diffusion, a dual descrip-
tion of the non-stationary signals in both time and frequency is
needed.
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Laskar developed the frequency analysis method and first
successfully applied it to study the dynamics of planets in the
Solar System, showing that the outer planets have a regular
motion while the inner ones are chaotic. Recently, his method
has been applied to investigate the slow diffusion in phase space
of the 2:1 asteroidal resonance problem (Nesvorny & Ferraz-
Mello 19953,

Laskar’s frequency analysis method is very effective in
the cases where the independent frequencies vary sufficiently
slowly, so that their good measure can be obtained by FT. This
method belongs to the class of methods called windowed Fourier
transform methods (WFT), based on the adaption of the classi-
cal tools aimed at studying the stationary signals. This approach
performs a time-dependent spectral analysis considering a non-
stationary signal as a sequence of quasi-stationary segments for
which Fourier transform methods are relevant. In this transform
the signal is multiplied by a window function before performing
FT, such as

1 +T )
XW= 55 [ atve! g, @

where g(t) is a window filter defined on a finite time span
[-T,71.

The limitations of WFT are derived from the fact that the
window size must be chosen a priori. When independent fre-
quencies of the dynamical system vary rapidly in a large scale
(for example, in the case of the overlap of various secondary
resonances), the sampling of the signals by a fixed-size win-
dow becomes inadequate and leads to loss of precision of the
frequency measure. To overcome this difficulty, we suggest to
apply the wavelet analysis method, which automatically adjusts
both the time size and the frequency size of applied window.

2. Description of the wavelet analysis method

In this work, a continuous wavelet transform is used due to,
mainly, our interest in the precise determination of the tem-
poral frequency evolution. We briefly overview in this section
some mathematical properties of the wavelet basis functions.
For more detailed information we refer to the following works:
1) by Flandrin (1987) on the methods of the non-stationary sig-
nal processing; 2) by Grossman et al. (1987) on continuous
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wavelet transform; and 3) by Bendjoya & Slezak (1993) on its
applications to some dynamical systems.

The continuous wavelet transform {WT) of a real signal x{t)
is defined as:

C(a,b) = K(a)/ z(t) g* ( b) dt, 3)

where g()is an analysing wavelet function, * indicates the com-
plex conjugate and K(a) is a normalization factor. The wavelet
bhasis functions are two-parameter functions which are obtained
from a single function g(t) by translations acting on the time
variable (parameter b) and dilatation acting on both the time and
frequency variables (scaling parameter a). If g*(t) is a function
vanishing outside some interval [¢q0,f0], the WT procedure
isolates the time segment of the length a(tnax — fmin) centered
at ab from time series x(¢). Note, that, for different values of the
scaling parameter a, the basis wavelet functions have different
sizes but identical shape to the analysing function g(£).

The WT in Eq. (3) is considered as a correlation between
signal z(t) and dilated function g*(t/a). Using the time scal-
ing and time shifting properties of Fourier transform, we can
represent the WT equivalently in the frequency domain as

Cla,b) = a K(a) f X(f)G*(af)e™ P q f, (4)

where X (f) and G(f) are the Fourier spectra of the signal and
of the analysing wavelet function, respectively. Representation
of C(a, b) in this form allows us to understand the band-pass
frequency feature of the wavelet transform. Indeed, if G*(f) is
a function vanishing outside some interval [ fuyin. fmaxl, EQ. (4)
shows that the wavelet transform procedure isolates the fre-
quency band from time series x(f), i.e. it acts as the band-pass
filter and the width of the band-pass is equal to (fyax — fmin)/@-

The conditions imposed on the analysing wavelet function
g(t) are:

1) locality, i.¢. g(t) should be a rapidly vanishing function
both in time and frequency and 2) admissibility, which is re-
quired for purpose of reconstruction of signal from its wavelet
transform:

e |G
27? —oo I

The choice of the function introduced by Morlet

BN G5« 0o

g(t) - e—t1/28i Wi t + E—wfnl/z (5)

as the analysing wavelet function, is adequate for the analy-
sis of the time-dependent frequencies of the oscillatory signals.
Here, the term in w2, insures the admissibility and is negligi-
ble for wy,, > 5. In this paper, we assume that w,, = 27. The
Gaussian function is mostly suitable as the analysing wavelet
function due to its following properties: 1} it has the best pos-
sible simultaneous localization in time and in frequency; 2) it
is closed under Fourier transform, pointwise multiplication and
convolution; 3) the transition from one to more dimensions is

immediate. The Gaussian is a rapidly vanishing function, but,
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in the strong sense, it is not a localized function because its tail
extends to infinity. However, the good localization properties
of any Gaussian may be “forced” by truncation at the points
where it has a zero of sufficiently high order, i.e. at the points
bt At, where e==5'/20" = ¢ (¢ is small). Therefore, by using
Gaussian as the analysing wavelet, we have

a) locality in time, which is determined by the semi-width
of the gaussian function

At=a+/2|lnel. (6}

The interval [b— Af, b+ Atf] is a time domain that influences the
function C(f, b) at a given point of the (b, f)-plane. Therefore,
if the analysed frequency exists in some finite time interval,
the ends of the width At of this interval, obtained by means of
wavelet transform, are “polluted’;

b) locality in frequency, which is given by

Af=Y2 18 "2““6 £ %)

where f = l/a. The interval [f — Af, f+ Af] hereafter called
as the band-pass interval, is a range of Fourier components of
z(f) which are found at the given point of the (b, f)-plane.

In this work, the WT of a real signal x(t) is obtained as

brAt 2 2 .
C(f,b) = ﬂ a(t) g B2 I =0 gy (g)

In practice, the integral (8) is calculated by conventional quadra-
ture procedures on the grid of the b and f trial values. The range
of the f variation is obtained from the FFT power spectrum of
x(t). The wavelet transform C(f, b} is a complex function of
two parameters: time b and frequency f. Here we use two al-
ternative representations of the results of WT analysis: the first
one consists in plotting the modulus (amplitude) of C(f, b) for
the fixed value of trial frequency; and the second one consists in
plotting in the (b, f)-plane the values of frequency correspond-
ing to the maximum of |C(f, )| obtained at a fixed point of
time b.

There exists always an error which depends on the sampling
grid and on the truncation of the wavelet function given by
Eq. (5). The truncation error may be evalvated using Eq. (8).
Indeed, at a given time b, we obtain

Atf
,\/_ 3

where A is the amplitude of the analysed f oscillation, [b —
At, b+ At} is the lifetime interval of f and

2 Y
@(y)z\/;/o -

is a probability integral, calculated by its series representation
formula. The values of ©(y) range in the interval between 0
and 1, the latter being the limiting value for ¥y — oo. Thus, the

truncation of g(t} reduces the actual value of A by a factor of
el

[C(f, 01 = Ad(

9)
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Fig. 1la-d. Orbit of regular motion: a FFT
power spectrum of «; b Modulus of C(fz,1)
vs time for fixed fo; ¢ FFT power spectrum

of |C(fw,t)|; 4 Frequency corresponding to
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3. Applications of the wavelet analysis method

We have analysed by means of WT three orbits obtained by
numerical integration of the asteroidal problem in the 2:1 res-
onance with Jupiter including the action of Saturn. The initial
conditions of the fictitious asteroids were chosen in order to ob-
tain the following cases: 1) one orbit of regular motion whose
independent frequencies remain constant in the interval of in-
tegration; 2} one orbit of chaotic motion whose independent
frequencies slowly vary in time and 3) one orbit of strongly
chaotic motion. The frequency of the circulation of the longi-
tude of perihelion f was chosen as the WT analysis parameter.

3.1. Regular motion

In the case of a periodic signal of frequency f, the WT coef-
ficients may be obtained from (8) analytically and they are

_U—rwd
AP

A,

C(f,by=Zemi="e
|C(f,b)| is time independent and is maximal at f = f. Now we
consider the case @w(f) = A sin 2xf ¢ + B sin 2n(f, + 6 )¢,
where (f., + &f) is a frequency from the band-pass interval;
then, for a fixed f, we have

i
|C(fu, )2 = const + ABe "7 cos2méfb,

where the additive constant depends on A, B and 6 f. The mod-
ulus of the wavelet transform is a periodic function of frequency

of.

max |C(f,t)] at fixed ¢ vs time. Time units are
10 years, frequency units are 10~ */years

As an example which corresponds well to this case, one
asteroidal orbit calculated in the planar model with initial con-
ditions ag = 3.2758088 AU, ¢; = 0.2155, Aw =0 and ¢ = 0°
was analyzed. The Fourier power spectrum of = over 1.3 Myr
is shown in Fig. 1a, The access to the character of the motion is
complicated by the presence of the spectral peaks, which sur-
round the f-line. Fig. 1b shows |C'(f, b)| calculated numeri-
cally for the fixed fr,, obtained from the Fourier spectrum. The
regular character of motion becomes evident from the Fourier
spectrum of |C(f,b)| (Fig. 1c); the spectral components of
the lowest frequencies which are associated to gs and g4 secu-
lar frequencies with periods equal to ~ 300000 and ~ 45 000
years (Carpino et al. 1987), respectively, are seenin Fig. 1c. The
time variation of the frequency corresponding to max |C(f, b)),
is traced in Fig. 1d by the thin curve. After filtering out the spec-
tral components of frequency higher than 1/45 000 years, we
obtained the slow f variation with period ~ 300000 years,
traced in Fig. 1d by the thick curve.

3.2, Chaotic motion

In order to illustrate the WT performance in the case of chactic
motion, it is convenient to distinguish between the weak and
strong chaotic motion. But we must stress that the calculation
procedures are similar in both cases. In this experiment, we
have chosen the value of ¢ in Eq. (6) equal to 2x10~2; hence,
the width of the analysing wavelet function in the time domain
is 2 At & 7 a. We assume that the frequency varies slowly, if it
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Fig. 2a~d. Orbit of weakly chaotic motion: a
FFT power spectrum of zo; b Frequency corre-
sponding to max |C(f,t)| at fixed ¢ vs time; ¢
FFT power spectrum of max |C{(f, t)|; d Same
as for Fig. 2b, obtained by Laskar’s (1990) fre-

0.0 0.3 0.6

is approximately constant during at least seven oscillation peri-
ods; then, the asteroidal motion is considered weakly chaotic. In
this case, the truncation error in the calculated amplitude of @
oscillation is equal to 5x10~* A. Ata given time b, max |C(f, b)|
corresponds to the value of f which may be obtained with a
precision which is determined by the frequency gnd chosen.
In the case of strongly chaotic motion, when the frequency
varies more rapidly, the calculated amplitude of the analyzed
frequency is strongly reduced by the factor &; as a consequence,
the amplitudes of the frequencies from the band-pass interval,
given by (7), which are presented in the analysed time interval,
become dominating. Hence, in the case of strongly chaotic mo-
tion, the WT procedure gives us the mean value of frequency
over a time interval which corresponds to the time width of the
analysing wavelet function.

1} One orbit of weakly chaotic motion was calculated in
the planar model with initial conditions ay = 3.2612404 AU,
eg = 0.2155, ¢ = 0° and Awop = 0°. The Fourier power spec-
trum of w over the time interval 1.3 Myr, shown in Fig. 2a,
gives information about the interval of the frequency varia-
tton. The temporal evolution of the frequency corresponding to
max |C(f, b)| is shown in Fig. 2b by the thin curve. The Fourier
spectrum of max |C(f, b)| (Fig. 2¢) confirms the chaotic char-
acter of motion. The smoothed thick curve in Fig. 2b obtained
by filtering out the frequencies above 1/45 000 years, value ap-
proximately corresponding to a ge secular frequency, shows a
slow diffusion of the f_ frequency in time.

quency analysis. Time units are 10° years, fre-
quency units are 10~ */years

Fig. 2d represents the similar result obtained by applica-
tion of the frequency analysis method developed by Laskar
(1990). Similarity of Fig. 2b and Fig. 2d is apparent. In fact,
from Eq. (2) and Eq. (8), it is noted that the frequency measures
ata given time obtained by both methods differ only in the choice
of applied window. Thus, in both cases, the frequency precision
depends on the chosen frequency grid and on the quadrature
procedure used. An important aspect is that the precision of the
frequency measurement based on the Fourier transform meth-
ods is always limited by condition AtAf = const obtained
from Eq. (7) and Eq. (6).

2) To illustrate the case of strongly chaotic motion, we
choose the initial conditions of the fictitious asteroid from the
zone of the overlap of various secondary resonances (ap =
3.2884 AU, eg = 0.10, Iy = 5°, 0p = 0° and Awgy = 0°). The
FFT power spectrum over 1.3 Myr (Fig. 3a) shows a large range
of the f, variation. The various bands of spectral lines related to
the presence of secondary resonances are indicated by the num-
ber of the corresponding resonance. The time evolution of the
frequency corresponding to max |C(f, b)| is plotted in Fig. 3b.
The loci of the secondary resonances traced by horizontal lines
are indicated by the corresponding ratio. The diffusion of the [
independent frequency to the regions of higher order secondary
resonances is observed, as well as a temporary capture in the
% secondary resonance. In Fig. 3¢ we plotted max |C{(f, b)| as
a function of time. According to Fig. 3c, the regions where f
varies rapidly, correspond to minimal values of max |C(f, b)|; in
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contrast, in the region of capture in the % secondary resonance,
where [, varies stowly, max |[C(f, b)| is an approximately pe-
riodic function with a period corresponding to the frequency
of the % secondary resonant angle. We have also measured ap-
proximately the periods of the first 150 circulations of the angle
w (~ 220000 years), which are plotied by the thin curve in
Fig. 3d (abscissa is a circulation number). The thick curve rep-
resents the frequency variation obtained by the WT procedure
and is shown in Fig. 5b in the corresponding time interval. It
can be seen very clearly that the WT analysis has a smoothing
property and gives the mean value of the frequency in the case
of the strongly chaotic frequency variation.

4, Conclusion

The advantage of the WT against WFT is the efficiency of the
non-stationary signal aralysis caused by the special wavelet
function set, which changes its size and position by dilatation
and shifting. The wavelet transform decomposes the time series
using a wavelet basis of functions that are localized both in time
and frequency domains. The implementation of wavelet trans-
form method is simple. The method shows a good performance
when applied to either weakly or strongly chaotic motions and
avoids the limitations of the methods based on the fixed-size
window filter. Nevertheless, it has inevitable shortcomings due
1o the accuracy trade-offs between time and frequency, i.e. a
good frequency resolution can only be achieved by means of a

quency units are 10~ /years

large window, which results in a poor time resolution and, on the
contrary, a good time resolution implies short windows, which
results in a poor frequency resolution.

Acknowledgements, The authors are grateful to Prof. S. Ferraz-Mello
for critical comments to¢ manuscript. This work was supported by the
Research Foundation of the State of Sio Paulo - FAPESP.

References

Bendjoya, Ph., Slezak, E., 1993, Celest. Mech. and Dynam. Astron.
56, 231

Carpino, M., Milari, A., Nobili, A M., 1987, A& A 181, 182

Flandrin, P., 1987. In: Combes J.M., Grossmann A. and Tchamitchian
Ph. (eds), Wavelets Time-Frequency Methods in Phase Space,
Springer-Verlag, 68

Grossmann, A., Kronland-Martinet R., Morlet J., 1987. In: Combes
I1.M., Grossmann A. and Tchamitchian Ph. {eds.), Wavelets Time-
Frequency Methods in Phase Space, Springer-Verlag, 2

Laskar, J., 1990, Icarus 88, 266

Laskar, J., 1993a, Celest. Mech. Dyn. Astron. 56, 191

Laskar, J., 1993b, Phisica D 67, 257

Michtchenko, T., Ferraz-Mello, S., 1995, A& A 303, 945

Nesvorny, D., Ferraz-Mello, S., 1995, A& A (submiited)

This article was processed by the author using Springer-Verlag IXTX
A&A style file L-AA version 3.

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1996A%26A...313..674M&db_key=AST

