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Effects of Planetary Migration on Natural Satellites of the Outer Planets
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Department of Space Studies, Southwest Research Institute, 1050 Walnut Street, Suite 426, Boulder, Colorado 80302

Received December 4, 2001; revised March 15, 2002

Numerous studies in the past few years have analyzed possible ef-
fects of planetary migration on the small bodies of the Solar System
(mainly asteroids and KBOs), with the double aim of explaining
certain dynamical structures in these systems, as well as placing
limits on the magnitude of the radial migration of the planets. Here
we undertake a similar aim, only this time concentrating on the
dynamical stability of planetary satellites in a migration scenario.
However, different from previous works, the strongest perturba-
tions on satellite systems are not due to the secular variation of the
semimajor axes of the planets, but from the planetesimals them-
selves. These perturbations result from close approaches between
the planetesimals and satellites.

We present results of several numerical simulations of the dy-
namical evolution of real and fictitious satellite systems around the
outer planets, under the effects of multiple passages of a popu-
lation of planetesimals representing the large-body component of
a residual rocky disk. Assuming that this component dominated
the total mass of the disk, our results show that the present sys-
tems of satellites of Uranus and Neptune do not seem to be com-
patible with a planetary migration larger than even one quarter
that suggested by previous studies, unless these bodies were orig-
inated during the late stage of evaporation of the planetesimal
disk. For larger variations of the semimajor axes of the planets,
most of the satellites would either be ejected from the system or
suffer mutual collisions due to excitation in their eccentricities.
For the systems of Jupiter and Saturn, these perturbations are
not so severe, and even large migrations do not introduce large
instabilities.

Nevertheless, even a small number of 1000-km planetesimals
in the region may introduce significant excitation in the eccentri-
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cities and inclinations of satellites. Adequate values of this
component may help explain the present dynamical distribution
of distant satellites, including the highly peculiar orbit of Nereid.
c© 2002 Elsevier Science (USA)
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1. INTRODUCTION
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The formation of the outer planets can be separated into two
distinct groups. On one hand, Jupiter and Saturn were formed in
a gas-rich environment. This implied a relatively fast formation
time on the order of 106–107 years (Pollack et al. 1996), a large
proportion of volatile gaseous component in them (chemical
composition similar to the Sun), and little or no remnant of
the primordial accretion disk remained at 5–10 AU after the
accretion process.

The formation of Uranus and Neptune apparently took differ-
ent lines. According to Fernández and Ip (1984), the fact that
the ratio of gaseous material to rocky material in these planets
is only about 20% implies that these bodies formed primarily
after the dissipation of the solar nebula and, thus, in a gas-free
scenario. Practically all studies of planetary formation (from the
pioneering work of Safronov onward) place the formation times
of these bodies on the order of 108–109 years (if not longer). For-
mation in a gas-free scenario is different from that in a gas-rich
scenario. In the gas-free scenario the efficiency of the accretion
process is lower, and after the formation of the planets a signifi-
cant portion of the original rocky disk may have survived in the
region beyond 10 AU (see Thommes et al. 1999).

The interaction of the residual disk with the formed outer plan-
ets may have given origin to the so-called planetary migration.
0019-1035/02 $35.00
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Due to the gravitational perturbations of the planets (primarily,
close encounters) there was an exchange of energy and angular
momentum between both populations. As a result, the disk of
planetesimals was expelled from the system and the orbits of the
planets suffered secular (and permanent) changes. According to
Hahn and Malhotra (1999), if the total mass of the residual disk
was equal to 50M⊕, then the semimajor axis of Jupiter was de-
creased by a quantity on the order of 0.2 AU, while the orbits of
Saturn, Uranus, and Neptune were pushed to outer values. In the
case of Neptune, this change was large, on the order of 7 AU.

The main consequence of this planetary migration was a sec-
ular temporal change in the semimajor axes of the planets lasting
≈ 5–30 Myr. To check this result, several studies were performed
on the effects of such a variation on the orbits of small bodies
of the Solar System, such as the asteroid belt, the Trojan group,
and Kuiper belt objects. It seems that, depending on the mag-
nitude, this migration is not only consistent with the dynamical
structure of these systems but also may help to understand cer-
tain characteristics. Examples are the stirring of eccentricities in
the Kuiper belt (Malhotra 1993, 1995) and asteroid belt (Gomes
1997), absence of bodies in the Thule group (Michtchenko, in
preparation), and maybe even the difference between the L4 and
L5 population in the Trojan swarm (Gomes 1998). It has also
been proposed that the Lunar late heavy bombardment could
have been triggered by the formation of Uranus and Neptune
and the consequent migration of the jovian planets (Wetherill
1975, Levison et al. 2001).

It is important to stress, however, that all these works con-
centrate on the effects of the changes in semimajor axes of the
planets according to an externally fixed function a(t), and little
has been discussed on the origin of this migration. We know that
this orbital variation is due to close encounters of planetesimals
with the planets. What is the effect of the same encounters on
small bodies of the Solar System? This is the question we wish
to address.

Among the “small bodies” whose stability may be affected
by these close encounters, we will study the natural satellites
of the outer planets. We wish to analyze the perturbative effects
of the swing-bys of the planetesimals on the orbital motion of
planetary satellites. However, before undertaking this study, the
first question we must answer is the applicability of this phys-
ical system. During the planetary migration, were the satellites
already formed? Was their dynamical structure (i.e., stability,
resonance relations) the same as it is today? The main question
is the formation time of the satellites versus the migration time
of the planets. Let us discuss this briefly.

The satellites of the outer planets can be divided into two
groups, each with distinct dynamical properties which probably
reflect different formation mechanisms. The so-called regular
satellites are located close to the primary and are characterized
by orbits which are practically circular and planar with respect
to the planet’s equator. It includes the large quasi-spherical bod-

ies (such as the Galilean satellites) as well as the small bod-
ies located at very small distances from the primary, such as
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those found in the vicinity of the ring systems. The abundance
of mean-motion resonances among them speaks of significant
orbital variation due to tidal evolution; thus, their original semi-
major axes could have been much different in the past. Notwith-
standing this fact, it is very likely that their origin is primordial,
and they were formed through direct accretion from the circum-
planetary disk. It is interesting to note that even in the case of
Uranus, whose obliquity is more than 90◦, its inner satellites all
lie very close to the equatorial plane. Thus, we may conclude
that during the post-planetary formation migration process, at
least as depicted by Fernández and Ip, Hahn and Malhotra, and
others, these bodies were probably already present.

The second group of bodies is usually referred to as irregular
satellites. They are located at large distances from the primary
and their orbits are characterized by large eccentricities and/or
inclinations. In most cases the orbits are retrograde. In prin-
ciple, their dynamical properties are not very compatible with
formation from the primordial disk, unless latter evolutionary
mechanisms can account for their present orbits. To date, this
seems unlikely. Although solar perturbations are important at
these planetary distances, these effects are insufficient to cause
such a large increase in peculiar velocities. For this reason, sev-
eral authors have suggested that they were not originated from
the circumplanetary disk but, rather, consist of exterior plan-
etesimals captured by the planet (see Gladman et al. 2001 and
references therein). Three different scenarios are possible. In the
first, the capture occurred during the mass growth of the primary
(e.g., Heppenheimer and Porco 1977), in which temporary grav-
itational trappings were made permanent by the increase in size
of Hill radius. In the second, the capture also occurred in primor-
dial times, only this time assisted by gas drag with the surround-
ing solar nebula (Pollack et al. 1979). Last of all, in the third
scenario, capture was accomplished through collisions between
two or more planetesimals experiencing hyperbolic fly-bys.

The first two alternatives are usually believed to be applicable
only to Jupiter and Saturn, since Uranus and Neptune are missing
gas envelopes. Even in the case of both larger planets, the first
hypothesis is usually thought of as unlikely since gravitational
capture during formation times generally yields retrograde and
not direct orbits, especially if the planetary mass increased very
fast (on the order of 104 years). However, this is not necessarily
the rule. Recent simulations by Nesvorný et al. (2002) seem to
indicate that slow gas contraction in a cold disk can in fact give
origin to distant prograde bodies.

Finally, the collisional hypothesis for satellite capture is also
plausible, although perhaps not probable. The possible existence
of dynamical “families” among them (Gladman et al. 2001)
seems to support a collisional scenario. However, it must be
noted that the members of many of these families have very low
relative velocities (on the order of 10–40 m/s), and thus con-
sistent with the idea that at least the parent body was already
bounded to the planet prior to the fragmentation. Observational

evidence also questions a collisional origin. As an example,
recent spectroscopic studies of Nereid (Brown et al. 1998) seem
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the satellite systems and the secular changes in the semimajor
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to indicate that this satellite was formed in a circumplanetary
environment rather than being a captured object.

In fact, Nereid has always been a puzzle. Even though it has
a prograde orbit, it is located at very large distances from the
primary and has the largest eccentricity (e ≈ 0.75) among ir-
regular satellites. To add to the confusion, Triton, located much
closer to the planet, moves in a retrograde orbit. Goldreich
et al. (1989) have suggested that the dynamical characteristics
of Nereid could be explained considering perturbative effects
of Triton in past times. In this scenario, Nereid is a primordial
body but Triton was originally a planetesimal captured from a
heliocentric orbit. Dissipation due to tides raised on Neptune
caused Triton’s orbit to evolve toward its present state. During
this evolution, Triton perturbed Nereid, thus accounting for this
satellite’s highly eccentric and inclined orbit.

In conclusion, although a primordial origin for the regular
satellites is fairly agreed upon, the same does not apply to the
irregular group. However, even in this case the balance seems
presently shifted toward gravitational capture during the forma-
tion of the planet itself. If this were the case, it is interesting to
note that, although these bodies cannot be thought of as primor-
dial in a strict sense, their capture must have occurred before the
end of the formation of the planets. Chronologically then, they
may even predate the inner regular satellites themselves.

From this discussion it seems likely that at least the inner
group of bodies (and perhaps the irregular group) already existed
at the time planetary formation ended. How does the formation
of the satellites relate with the timescale of the migration of
the outer planets? First, it is important to differentiate between
radial motion of planetary embryos and what is commonly re-
ferred to as planetary migration. The former (which we may call
“embryonic migration”) is common in all accretion processes of
planetary formation and occurs throughout the whole formation
time of the planet. As mentioned by Ida et al. (2000) and Bryden
et al. (2000), this secular variation of the semimajor axes of the
embryos is driven by accretion/scattering in an asymmetrical
planetesimal distribution and is thus independent of the other
giant planets.

The second type of orbital drift, what is usually referred to
as “planetary migration” (e.g., Fernández and Ip and Hahn and
Malhotra), is of a different nature. It is believed to have occurred
after the formation of the planets and caused by the interactions
of several planets with the residual planetesimal disk. This disk
no longer contributed significantly to the accretion process and
thus the interaction was pure scattering. Of course it is very prob-
able that both models of migration were part of a single process
that we simply separate chronologically; Hahn and Malhotra’s
model is simply that part which occurred after the end of the
formation of the planets.

From all these considerations we can summarize that the aim
of our study will be to analyze the effects of the post-formation
planetary migration on satellite orbits, trying to deduce what is
its maximum allowed magnitude consistent with the observed

distribution of bodies around the outer planets. This manuscript
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is divided as follows: In Section 2 we discuss the method of nu-
merical integration employed in this work. Section 3 discusses
the results of our simulation of planetary migration. We also
analyze the close encounters themselves, with special empha-
sis on the distribution of planetocentric orbits as a function of
the pericentric distance. Section 4 uses these results to simulate
the orbital evolution of individual real/fictitious satellites. The
effects on satellite systems and possible restraints on planetary
migration are discussed in Section 5. Last of all, conclusions
close this manuscript in Section 6.

2. OUTLINES OF THE METHOD

The principal aim of this work is to analyze the perturba-
tions of planetesimal fly-bys on satellite orbits. Then, as a first
step, we need to know the distribution of these close encounters:
their relative velocity, the type of motion relative to the planet,
frequency, planetesimal mass, etc. This in turn implies that we
must begin by simulating the planetary migration itself. In view
of this, we divide our work into two parts:

• Simulation of planetary migration: Our first aim was to re-
produce the results of classical studies of planetary migration
such as, for example, Hahn and Malhotra (1999). We placed
the four jovian planets amidst a disk of 1000 massless plan-
etesimals distributed in a certain interval of semimajor axis and
having a certain distribution of eccentricities and inclinations.
The total number of planetesimals was determined by our CPU
limitations. During the evolution of this system, we checked for
planetary encounters, defined when the distance between a plan-
etesimal and a planet was smaller than the distance f × RHill,
where RHill is the planetary Hill radius and f is a factor larger
than unity. Each encounter was registered in detail, keeping track
of the position and velocity of the planetesimal (in the plane-
tocentric reference frame) throughout the passage. Since the
disk was supposed massless, during this simulation the planets
themselves did not migrate explicitly. The secular changes in
the planetary orbits were later modeled by an “action–reaction”
principle, through the changes in heliocentric energy and an-
gular momentum (per unit mass) suffered by the planetesimal
population.

• Effects of the encounters on satellite orbits: Having a data-
base of all the encounters, we used this information as a starting
ground for a second simulation. The idea now was to place a
group of fictitious/real satellites (also considered as massless
particles) orbiting each planet and take from the database of
the previous simulation each encounter registered with that par-
ticular primary. Assigning a certain non-zero mass m to each
planetesimal, we simulated the perturbative effects of the close
approaches on the orbit of each of the satellites. Since this same
value of m also yielded a certain value for the planetary migra-
tion, we hope to obtain a relationship between the stability of
axes of the outer planets.
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A word of caution at this point: During both simulations,
we are representing the original planetesimal disk by a limited
population of 1000 bodies. One may ask whether this approx-
imation is adequate, and whether our results are expected to
represent the effects of the original disk. The answer to this
question depends on two aspects: (i) the mass distribution of
the “real” residual disk after the formation of the planets, and
(ii) the type of physical processes that dominate the dynamical
evolution of the planets and satellites.

On the first point, it must be recalled that planetary forma-
tion in the outer Solar System is not yet well understood, and
thus the final mass distribution is still an open problem. Per-
haps one of the main questions is whether accretion proceeded
in a classical runaway manner (Greenberg et al. 1978) or if it
was dominated by an oligarchic growth (e.g., Ida and Makino
1993). In the first case, we would expect a population with very
few large bodies and in which most of the total mass remained
in small bodies in the 10- to 100-km-size range (Kokubo and
Ida 1998). In the second scenario, runaway only occurred dur-
ing the first stages of accretion, but stopped for each embryo
after it reached a maximum size on the order of ≈1000 km.
After this point, larger embryos grew slower than smaller ones,
resulting in a (more or less) constant mass distribution for the
large bodies. If the accretion timescales varied inversely pro-
portional to the cube of the distance from the Sun, and since
the Saturn core (approximately 10 Earth masses) formed at
9 AU, then it is quite conceivable that the final mass distri-
bution at 10–35 AU contained several hundreds of Mars-size
(or larger) bodies. Actually, it may be argued that numerous
large bodies indeed formed in this part of the Solar System.
For example, the large Uranus obliquity (≈97◦) may have orig-
inated in late stages of the accretion of this planet by massive
planetesimals impacts (Lissauer and Safronov 1991, Slattery
et al. 1992).

However, even if several hundred of Mars-size bodies are ex-
pected in the 10- to 35-AU region, it is still not clear whether
they dominated the mass distribution of the residual disk. If
this were the case, then our initial swarm of 1000 large bodies
would be a fairly good representation. Nevertheless, this ques-
tion is not fundamental for numerical simulations, as long as
the dynamical evolution of the system is governed by physical
processes which do not depend explicitly on the number of par-
ticles. Since planetary migration seems to be mainly due to the
interplay of asymmetries in the planetesimal disk (e.g., Ida et al.
2000), a “real” disk of an excessively large number of planetesi-
mals can be modeled by a population of 103 bodies with relative
safety. Of course numerical noise is unavoidable, but the mag-
nitude of the orbital migration depends fundamentally on the
total mass of the disk and not on the number of bodies. For this
reason, our results for the first part of the present work should
be fairly reliable. The size–frequency distribution of planetes-
imals in a real disk becomes more crucial to the second part

of the present work. We explain our approach to this issue in
Section 4.2.
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3. PLANETARY MIGRATION

3.1. Initial Conditions and Model

Our first integration was performed using the Swift RMVS3
integration code (Levison and Duncan 1994) and simulated the
evolution of a disk of 1000 massless planetesimals subjected
to the gravitational perturbations of the four major outer plan-
ets. The planetesimal swarm was distributed in the interval 10–
40 AU with density ∝ a−1 (a being the semimajor axis). Initial
eccentricities were taken as 0.01 and initial inclinations as half
this value, thus simulating a cold disk. All angular variables were
chosen randomly between zero and 360◦. The massive planets
were initially put in their hypothetical pre-migration positions.
These initial conditions were obtained following the same ap-
proach used by Gomes (1997, 1998, 2000) and Levison et al.
(2001), i.e., starting form the planetary present positions, a back-
ward integration was performed applying a non-conservative
force that simulates the migration in the opposite sense. In this
way, the initial values of the semimajor axes were aJup = 5.4 AU,
aSat = 8.8 AU, aUra = 16.5 AU, and aNep = 23.0 AU. Finally, the
planetary masses were taken as their present values. We treated
the planetesimals as massless particles; thus, the simulation was
performed disregarding the gravitational perturbations of the
swarm on the planets.

Total integration time was 107 years with a timestep of
0.17 years. The close encounters between planetesimals and
planets were identified each time the planetocentric distance was
smaller than Rcrit = 2RHill. During the whole time interval the
body remained inside a sphere of Rcrit radius, the following infor-
mation was registered: time, planet and planetesimal involved,
planetocentric coordinates and velocities of the planetesimal,
heliocentric energy and heliocentric angular momentum of the
same body. This information was stored at fixed intervals �t ,
which varied from 0.017 to 0.17 years, depending on which
planet was involved in the encounter.

3.2. Results

We begin analyzing the encounters suffered by Jupiter. The
two top plots in Fig. 1 show the cumulative number of close en-
counters as a function of time. N (ext) presents what we called
“exterior” encounters and are defined by the condition that the
planetocentric distance of the planetesimal r is smaller than
2RHill. All passages with r > 2RHill were not registered. This
limit was chosen after several test runs and after checking that
the effects of the neglected encounters were not significant to
the migration process. The quantity N (int) shows the number
of “interior” encounters, where r < RHill. We can see that both
numbers grow rapidly and, although there appears to be an in-
dication of a lowering of the steepness, we can see that after 107

years there is still a large number of encounters taking place.
This seems to confirm the results of Hahn and Malhotra (1999),

who predicted that the evaporation of the residual disk of plan-
etesimals could not have taken less than 107 years, contrary to
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FIG. 1. Encounters with Jupiter. N (ext) denotes the cumulative number
of exterior encounters (i.e., r < 2RHill) as a function of time. N (int) is the cu-
mulative number of interior encounters (i.e., r < RHill) as a function of time.
�E denotes the total change in heliocentric energy of the planetesimals, per
unit mass, summed over all the encounters. �L is the total change in angular
momentum.

other estimates such as those discussed in Fleming and Hamilton
(2000).

The number of interior encounters follows practically the
same trend as the exterior encounters, indicating that there seems
to be no overall temporal change in the preference between both
types. The ratio between both numbers is about 25%, and this
remains more or less constant throughout the simulation. More-
over, this value is practically the same for all outer planets. This
appears to indicate no significant gravitational focusing of the
planets at (1 − 2) × RHill distances, plus a great isotropy in the
encounters themselves, as seen from the planetocentric reference
frame. This last property is due to the fact that our planetesimal
disk is thick enough.

In the same figure, �E shows the temporal change in the he-
liocentric energy (per unit mass) of the planetesimals. It presents
a monotonous trend toward positive values. This means that, on
average, these bodies gain energy after close encounters with
Jupiter. Thinking now on the consequent effect on the planet,
this means that Jupiter itself loses energy as a function of time
due to these same encounters. Since the total energy must be
conserved, this implies that the change in orbital energy of the
planet �EP must be equal in magnitude but opposite in sign as
the effects on the small bodies. Thus �EP = −�E . Since loss
of energy implies a decrease in semimajor axis, we can con-
clude that the value of aJup should manifest a decrease with time,
exactly as found from previous works (e.g., Fernandez and Ip
1984). Finally, �L shows the change in angular momentum (per

unit mass) of the planetesimals. It is possible to use these data to
obtain the temporal variation of the eccentricity for each planet.
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Figure 2 shows the cumulative �EP (per unit mass) for all
planets, as a function of time. In the case of Jupiter and Saturn,
we can see that the trend is as expected from previous works,
indicating a loss of energy for the first planet and a gain in en-
ergy for the second. The two outermost planets, however, do
not show such a seemingly monotonic trend. For both the en-
ergy decreases during the beginning of the integration but then
reverses itself after a couple of million years. The overall behav-
ior, nevertheless, is adequate, once again indicating an outward
migration for both massive bodies.

Let us recall that, since the planetesimals were considered
massless, the integration did not yield explicit values for the
migration of the planets. Nevertheless, we can use the classical
swing-by formulation to relate the change of energy of the parti-
cles with the corresponding variation in semimajor axis of each
planet. This is given by

a(t) = −1

2
k2 MSun

(
E0 + m

Mp
�E(t)

)−1

, (1)

where k is Gauss’ constant, MSun is the Solar mass, Mp is
the mass of the planet, a0 is its initial semimajor axis, and
E0 = −k2 MSun/2a0 is its initial orbital energy. From the results
in Fig. 2, it is possible to compute the variation in semimajor
axis supposing certain values for the planetesimals’ masses m.
The value of m was chosen independently for each planet in
such a way as to yield a planetary migration from the initial or-
bits to present values of a. Thus, for example, the value of m for
those planetesimals having encounters with Jupiter was chosen
such that the computed final semimajor axis is equal to 5.2 AU,
similarly for the remaining planets. Results are shown in Fig. 3.
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over all the encounters with the different planets.
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FIG. 3. Simulation of the migration in semimajor axis for all major outer
planets.

The masses necessary for this are given below:

Jupiter: m = m0 ≡ 0.1M⊕

Saturn: m = m0 ≡ 0.1M⊕
(2)

Uranus: m = m0 ≡ 0.3M⊕

Neptune: m = m0 ≡ 0.2M⊕.

We note that they are not equal for each planet, so it appears
as though different masses for the planetesimal disk are neces-
sary to reproduce a migration to present orbits. This apparent
inconsistency (or rather, incompatibility with results by Hahn
and Malhotra (1999)) is due to the fact that in our simulation
the planets do not migrate. This has the consequence that the
outer part of our planetesimal disk (from approximately 28 AU
onward) remained untouched and never experienced close en-
counters with any planet. This contrasts with a simulation where
the outward motion of the planets constantly excites the orbits of
the outer fringes of the disk and thus constantly renews the plan-
etary feeding zones. Since this effect would be more noticeable
for Neptune and Uranus than for the inner massive bodies, we
need to increase (artificially) the mass of the outer planetesimals
in our integration to counteract our approximations.

Supposing a constant mass of m = 0.1M⊕ for the whole pop-
ulation of planetesimals, the total mass for the disk is approxi-
mately 100 Earth masses. This value is about twice that proposed
by Hahn and Malhotra (1999) for similar values of Jupiter’s mi-
gration. Nevertheless, we must note two things. First, our system
was traced for 107 years, only one third of the integration time of
this previous work. Second, since in our integration all particles
with a > 28 AU did not participate in the process, this means
that only about 625 planetesimals suffered at least one close ap-
proach. Consequently, the total mass of the “active” population

was only about 63M⊕, a value much more consistent with the
Han and Malhotra simulation.
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The greatest advantage of our scheme is the fact that the val-
ues of m can be modified after the integration is performed,
and thus we obtain results for different simulated masses of the
planetesimal disk without having to do further CPU-expensive
calculations. Let us define a positive real parameter β as

β = m

m0
, (3)

where m0 is the planetesimals’ mass given by Eqs. (2), and m is
a new different value. In the case of Neptune, for example, if we
consider a value of m = β × 0.2M⊕, we will obtain an orbital
migration for the planet equal to �aNep = β × 7.0 AU. Thus, a
value of β = 0.5 will yield a migration only half that predicted
by Hahn and Malhotra. Similar considerations hold for the re-
maining planets as well. Since different values of β will also
yield different perturbations on the planetary satellites (as will
be discussed in Section 4), we can automatically relate instabil-
ities in satellite systems with the corresponding magnitude of
planetary migration.

As a final note, it is important to stress that the principal objec-
tive of this work is not to obtain a general and consistent model
for the migration process. We are not particularly concerned with
the migration timescales or total mass of the particle disk. Our
aim is, however, to relate a given variation in semimajor axis of
a planet with the perturbations on its satellite system. The use of
our scheme allows us to efficiently sample the parameter space
without additional simulations.

3.3. Analysis of the Planetary Encounters

The next step is to analyze the distribution of planetocentric
orbits of the planetesimals. Typical questions we wish to address
are: How close do the planetesimals get to the planet? Do they
reach the region presently occupied by the satellites? What is
the relative velocity at pericenter? What type of planetocentric
orbits do they show? Do we find temporary captures?

As a first step, we approximated the close encounters with con-
ics, computing the osculating planetocentric orbital elements at
pericenter. Although this is not a good representation for plan-
etary distances on the order of 2RHill, the conics give an ade-
quate approximation in the vicinity of the satellite region (i.e.,
<0.1 AU). Typical results are presented in Fig. 4 for planetary
distances a few tenths of one Hill radius. Sample data points
from the database are shown as crosses in a planetocentric non-
rotating reference frame. The position of the planet (origin of the
coordinate system) is denoted by a black circle. The two-body
approximation is superposed to the crosses. Note that in some
cases the best conic is not a hyperbola but an ellipse, denoting
temporary captures of the planetesimals.

We can now assign to each encounter a given conic and use
the orbital elements to estimate the minimum distance to the
planet, maximum velocity, etc., and correlate this to other in-

formation, such as change in energy or angular momentum. We
begin plotting the (planetocentric) eccentricity as a function of
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FIG. 4. Close encounters with each of the planets, as seen in the planeto-
centric (x, y) plane. Crosses indicate positions obtained from the database of
the simulation. Lines represent a conic approximation of the orbit as determined
with the position and velocities of the closest approach of the planetesimal to
the planet. Black dots indicate the position of the primary.

(planetocentric) semimajor axis for every encounter with each
planet. The results are shown in Fig. 5, where each dot corre-
sponds to a single encounter. First, we can see that the number
of elliptic (e < 1) encounters is small for Jupiter and Saturn,
but this number grows significantly for the other planets. Very
possibly, this is due to the fact that Uranus and Neptune are
well immersed in the initial disk, so many planetesimals have
close approaches with low relative velocities. Each distribution
FIG. 5. Eccentricity vs semimajor axis for all encounters with each planet.
Note that e > 1 denotes hyperbolic motion and e < 1 ellipses.
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FIG. 6. Encounter velocity at pericenter (i.e., vmax) vs distance of closest
approach (i.e., rmin). Vertical lines show the semimajor axis of representative
bodies of each major group of real satellites around each planet. See text for
details.

is delimited by three curves (seen in the graph for Jupiter). The
two bounding the distribution at large a are given by the condi-
tion of elliptic orbits (bottom curve) and hyperbolic orbits (top
curve) having pericentric distance to the planet less than 2RHill.
Finally, the curve at the bottom left is given by the condition that
the pair (a, e) is such that the orbit is not bounded to the planet
in the three-body approximation (Sun + planet + planetesimal).
This is approximately given by the value of the Jacobi constant
equal or larger to the value corresponding to the L1 Lagrange
point. Note that the actual distribution of points is very well
encompassed within these bounds.

The next step is to use the orbital elements of the conic ap-
proximations to calculate minimum planetocentric distance and
maximum planetocentric velocity and see what proportion of
the encounters pass really close to the satellite systems. For the
perturbations on the satellites to be even marginally significant,
the passages have to be really close. Results are shown in Fig. 6.
Vertical lines show the approximate semimajor axes for repre-
sentative bodies of the main groups of satellites of each planet.
On top of each line the satellite is indicated by letters. From left
to right, each line corresponds to the following bodies:

• Jupiter: (Am) Amalthea, (C) Callisto, and (Pa) Pasiphae.
• Saturn: (M) Mimas, (T) Titan, and (Ph) Phoebe.
• Uranus: (M) Miranda, (O) Oberon, and (S) Sycorax.
• Neptune: (G) Galatea, (P) Proteus, (T) Triton, and (N)

Nereid.
Figure 6 shows significant differences among the planets. For
Jupiter and Saturn, both the retrograde and irregular satellites
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FIG. 7. Jupiter: Comparison of numerical data with curves of constant C . Top

Green line marks parabolic orbits.

(rightmost vertical lines) seem to suffer many close passages.
Regular and Galilean satellites suffer few encounters, and small
inner bodies practically none. Moreover, these last encounters
all happen at large relative velocities, so their effect should be
very small. In the case of Uranus, only retrograde satellites have
many encounters. Prograde irregular bodies very few, and inner
bodies even less. The same is noted for Neptune.

Most of the encounters in Fig. 6 are located above a limiting
curve. This curve is better observed in Fig. 7 (green line) and is
given by

v2 = 2GMp

r
, (4)

which defines an orbit as being parabolic. From Fig. 6 it is clear
that, at smaller pericentric distances, the orbits tend to be more
parabolic, while at larger pericentric distances we find a whole
spectra of orbits, from elliptic to hyperbolic. This implies that
the stability of satellites will be primarily affected by the quasi-
parabolic encounters. This is not a surprising result. In fact, the
encounters at small planetocentric distances are less affected
by the solar tide, and the temporarily captured bodies are able
to return to “infinity” only if they have the required energy,
i.e., are quasi-parabolic. On the other hand, encounters at large
planetocentric distances can have energies smaller or larger than
parabolic, and the bodies will still be able to escape helped by
the solar tide.
The above explanation has a rigorous proof in the conservation
of the Jacobi constant C during the encounters. It is easy to show
red line corresponds to C = 1, middle red line to C = 2.5, and bottom to C = 3.

that, for constant values of C , the relationship between vmax and
rmin is given by

vmax = 2πap

Tp

√
(1 − µ)2 + 2(1 − µ) + 2

µ

rmin
− C, (5)

where µ = Mp/(Msun + Mp), ap is the semimajor axis of the
planet, and TP is its orbital period in years. For planet crossing
orbits at heliocentric distances of 10–35 AU, typical values of C
are in the range of 2–3. Figure 7 shows the results from Eq. (5)
for three different values of C (red lines). It is clear from this
figure that, at small pericentric distances, the curves C = const
tend asymptotically to the green curve, i.e., to parabolic orbits.
The same result is obtained for the remaining three outer planets.

4. EFFECTS OF ENCOUNTERS ON SATELLITE ORBITS

We now have a dataset of all the close encounters suffered
by each planet during the evolution of the planetesimal disk.
Although in the first part of the present work these bodies were
massless, we can now assign a mass to each of them and correlate
the resulting planetary migration with the perturbations that each
fly-by will induce on satellite orbits. Let us recall that we can
define an external parameter β = m/m0, where m is the assigned
mass of each planetesimal (which can be varied freely), and
m0 would be the mass if we suppose a planetary migration as
proposed by Hahn and Malhotra (1999) for a disk with mass

equal to 50 M⊕. For the time being, however, we will not try
to directly relate possible instabilities of the satellites and the
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FIG. 8. Jupiter: RHill = 0.355 AU. Evolution of planetocentric semimajor
axis, eccentricity, and ecliptical inclination for an initially planar circular satellite
with a = 107 km � 0.067 AU. Parameter β was taken equal to one.

planetary migration. This point will be discussed in the next
section. For now, β is simply an indicator of the mass of each
planetesimal, in units of some pre-defined m0.

For the simulations of this second part of our work, we used a
specially designed code, based on subroutines of Swift RMVS3
(Levison and Duncan 1994). We assumed a massive planet to be
the central body, with the satellites represented by a swarm of
massless particles orbiting it. The passage of massive planetes-
imals during an encounter was simulated using the planetocen-
tric coordinates already stored in the first part of our work. We
used a two-body interpolation to get the position of the massive
planetesimals at intermediate steps. Furthermore, the orbits of
the satellites between encounters were supposed fixed and ad-
vanced using a two-body approximation. In other words, both
solar perturbations and effects due to the oblateness of the central
planet were neglected. This later approximation was necessary
to keep the CPU time within reasonable limits. We performed
several runs of groups of fictitious satellites at different distances
around each of the jovian planets. In all cases, initial eccentric-
ities and inclinations (with respect to the invariable plane of the
outer Solar System) were taken as zero. The idea was to let
the encounters themselves introduce any instabilities, without
starting from elliptic or inclined orbits which would be easier to
destabilize. The complete integration spanned 107 years, and the

fixed timestep varied from 1 to 60 days, depending on the cen-
tral planet under consideration and the average planetocentric
ATION EFFECTS 491

distance of the simulated satellites. The timestep was reduced
by a factor of 100 whenever a satellite had a close encounter
within 1 Hill radius to a planetesimal.

4.1. Examples of Single Satellites

In a first series of runs, and to see the general aspect of
the behavior of the system, we took a single fictitious satellite
around each planet. Its semimajor axis was taken a = 107 km
�0.067 AU for Jupiter, Saturn, and Uranus, and a = 5 × 106

km �0.037 AU for Neptune. In the case of Jupiter and Saturn,
a satellite with a � 0.067 AU roughly corresponds to the outer
satellites. In the case of Uranus, this semimajor axis corresponds
to the retrograde bodies. For Neptune, the initial condition cor-
responds approximately to Nereid’s semimajor axis. Results for
Jupiter and Neptune are shown in Figs. 8 and 9. The case of
Saturn is analogous to Fig. 8 and is not shown. Similarly, the
case of Uranus is analogous to Neptune. The value of β was set
to β = 1 for Jupiter and Saturn, and β = 0.25 for Uranus and
Neptune.

In the case of Jupiter’s satellite (Fig. 8), we can see that the
evolution of its orbit is significantly chaotic with several large-
scale variations throughtout the whole integration time. Each
encounter induces a quasi-instantaneous change (at least in the
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FIG. 9. Neptune: Evolution of planetocentric semimajor axis, eccentricity,
and inclination for a fictitious satellite. Initial semimajor axis was taken as

a = 5 × 106 km � 0.037 AU, which corresponds roughly with Nereid. Parameter
β = 0.25.
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scale of the plots) in the orbital energy and angular momentum
of the satellite. According to the relative location of both bodies
at the moment of closest approach, this change can be either pos-
itive or negative (Beaugé, in preparation). Since this geometry is
different (and unrelated) for each successive passage, the result-
ing effect is similar to a random walk in each orbital element.
In Fig. 8 the semimajor axis shows a significant overall secu-
lar increase, from 0.067 to about 0.076 AU. Although this does
not in itself imply orbital instability, if other sufficiently mas-
sive satellites were put in its vicinity, their interactions could
be significant, yielding possible mutual collisions. The present
collisional lifetime of the retrograde satellite group of Jupiter is
larger than 4 Gyr (Kessler 1981). Both the eccentricity and in-
clination also show a random-walk behavior. Nevertheless, their
maximum value is never large. Thus, it seems that although the
encounters can introduce some chaotic variations in the orbital
elements of the satellite, there are no large-scale instabilities
associated with these perturbations at a � 0.067 AU.

Neptune’s satellite (Fig. 9) shows a different behavior. Recall
that the initial semimajor axis of this body is similar to that of
the present Nereid. Moreover, in this case we chose β = 0.25.
First, we also note a secular change in the semimajor axis, al-
though this time the magnitude is much larger. Initially located at
a ≈ 0.037 AU, it reaches 1 Hill radius (indicated by the horizon-
tal broken line) in about 1.3 × 106 years. According to Hunter
(1967) and Nesvorný et al. (2002) when the value of a already
reaches approximately 0.5 RHill, a prograde satellite becomes
unstable due to solar tides (for retrograde orbits, this limit is
approximately (0.7 − 0.8) × RHill). A large instability is also
noted in the eccentricity. Initially zero, it rapidly reaches a value
around 0.8 and then oscillates during the whole interval, until it
finally reaches hyperbolic values at t ≈ 2.4 × 106 years. Even
though this occurs much later than the time a > RHill, we must
recall that our model does not include solar perturbations. Thus,
the effects on the eccentricity are solely due to the encounters
with planetesimals. Last of all, the inclination presents a more-
or-less monotonic growth over the whole time interval, with a
maximum value reaching about 50◦. We can thus conclude that
this body is in an extremely unstable region, and the perturba-
tions due to the encounters cause its expulsion from the primary
in a few million years.

These two results indicate large differences between the plan-
ets. While in the cases of Jupiter and Saturn, the encounters in-
duced only small-scale orbital variations (even for β = 1), for
Uranus and Neptune they quickly expelled the satellite from
the system (even for β = 0.25). The reasons for this difference
are twofold. First, the number of encounters suffered by the
satellites of Uranus and Neptune are much larger than those
suffered by Jupiter and Saturn. This is partially due to the fact
that these latter planets were originally located below the inner
border of the particle disk and thus received planetesimals only
after they suffered several encounters with the outermost plan-

ets. However, this is also a consequence of the fact that Uranus
and Neptune have a much smaller mass; thus planetesimals must
ND NESVORNÝ

undergo repetitive encounters before crossing orbits are reached
with Jupiter and/or Saturn.

The second reason is related to the relative planetocentric ve-
locities of the planetesimals at the closest approaches. As was
seen in Fig. 6, the encounters with Uranus and Neptune typ-
ically occur with vmax approximately half the value of those
reaching Saturn, and about one quarter the value of those en-
countering Jupiter. Since the perturbative effects of each fly-by
are proportional to the duration of the encounter, this means that
a given encounter will induce larger perturbations in the satel-
lite systems of the outermost planets. We can thus conclude that
the effects of the encounters are very dependent on the satellite
system in question. More importantly, any orbital instabilities
should appear primarily in satellites of Uranus or Neptune.

4.2. Random Walk and the Mass Distribution
of the Planetesimal Disk

The fact that the dynamical evolution of the satellites is given
by a random walk of the orbital elements was verified with a se-
ries of additional numerical simulations. In each simulation, the
number of planetesimals was artificially increased by cloning
several times each of the encounters in the simulation with only
1000 planetesimals. As a result, we confirmed that the net change
in the orbital elements of the fictitious satellites scaled inversely
proportional to the square root of the number of bodies N . This
means that the instabilities generated by the encounters depend
not only on the adopted value of β, but also on the number of
planetesimals in the disk. A larger mass for the disk will yield
larger variations in the orbital elements of the perturbed body,
but a larger population of planetesimals will imply a smaller dy-
namical effect, even if the total mass of the swarm is maintained
constant.

To quantify the dependence of the dynamical evolution of
satelites with these quantities, we will introduce the following
variables. Let us denote by MD the total mass of planetesimals
encountering a given planet. Call MD0 the value such that β = 1
and planetary migration acquire the nominal magnitude. Thus,
we can also write β = MD/MD0 . Furthermore, let us define m̄
as the principal (or dominating) planetesimal mass in the rocky
disk. In our simulation, we determine the effect of the fly-bys
on satellite orbits assuming a planetesimal mass of 0.1M⊕. If
other values are considered, it can easily be shown that this effect
scales as

α = β

√
m̄

0.1M⊕
. (6)

Thus, if we consider that the mass of the residual planetesimal
disk was dominated by large Mars-size bodies, α = β and any
instabilities detected in our simulations will be a function solely
of the adopted planetary migration. If, on the other hand, we
have α = 0.25, this can represent either a planetary migration of

one quarter of nominal magnitude or a full migration (β = 1) but
a planetesimal disk where the average mass of the population
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was only about m̄ ≈ 0.005M⊕. This is on the same order as the
mass of Pluto.

5. SIMULATIONS OF COMPLETE SATELLITE SYSTEMS

The next step is to analyze the orbital variations of a large
set of fictitious satellites, with initial semimajor axis chosen to
cover the whole spectra of the real satellites. For each planet
we took eight values of a in the interval [0.0003, 0.13] AU. The
lowest limit corresponds roughly to the inner groups of bod-
ies; the highest limit to retrograde orbits for Jupiter, Saturn, and
Uranus. For each value of semimajor axis we took 100 different
satellites, each with initial circular–planar orbits (with respect
to the invariable plane of the outer Solar System) but with mean
anomaly M distributed uniformly from 0◦ to 360◦. All satellites
were taken massless, and their orbits were simulated consider-
ing the effects of all the encounters suffered by each planet. The
value of α was taken equal to 0.25, 0.5, and 1.0 in different runs.
For all satellites, we registered the complete temporal variation
of semimajor axis, eccentricity, and inclination. A body was
considered ejected from the system whenever it reached a peri-
centric distance smaller than the planetary radius or e = 1 and
was deactivated from the simulation. We also computed the max-
imum, minimum, and mean final values of the orbital elements at
t = 107 years. Mean values were determined by averaging over
all the bodies with the same initial a that remained bounded to
the primary.

5.1. Uranus and Neptune

We begin by analyzing the number of satellites, out of the
initial 100 with the same a, that were deactivated from the
simulation. This is shown in Fig. 10 for Uranus and Neptune,
as a function of the initial radial distance and for three different
values of α. Continuous lines indicate results for α = 1, broken
lines for α = 0.5, and dotted lines for α = 0.25. In the left-hand
side plot, the present locations of the inner, central, and retro-
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FIG. 10. Percentage of escaped satellites, as function of initial semimajor
axis, for Uranus and Neptune. Continuous lines: α = 1, broken lines: α = 0.5,
and finally, dotted lines: α = 0.25.
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grade groups of uranian satellites are represented by Miranda,
Oberon, and Sycorax, respectively, and are indicated by the let-
ters M, O, S. In the right-hand plot, letters G, P, T, N show the
positions of Galatea, Proteus, Triton, and Nereid.

For Neptune’s system, we can see that the perturbations due
to the passages of the planetesimals are very destructive, even
for very small values of the semimajor axis. For α = 1 all test
satellites with initial conditions similar to Nereid (and beyond)
are ejected from the system (hyperbolic orbits or collisions with
the planet). Although some test satellites survive for smaller
distances to the planet, still approximately 70% of all fictitious
bodies in the inner group (represented by Galatea) are also ex-
pelled.

The broken curve shows results supposing α = 0.5. The re-
gion around and beyond Nereid is still sufficiently unstable so as
to eject all bodies originally in this location. The region closer to
the planet is still fairly unstable, even though not so marked as
in the case α = 1. Approximately 75% of the inner test satellites
survive the integration, while only about half the Triton-type
bodies end up still bound to the system. Finally, the dotted line
presents results for α = 0.25. We note that the instabilities are
now significantly reduced. It is still observed that all satellites
with a > 0.1 AU escape; however, the region around Nereid
now shows over 25% of survivors. Test satellites with initial
semimajor axis around Triton and smaller also show greater sta-
bility. Still, in all cases over a quarter of the original population
escapes.

The plot for Uranus (Fig. 10, left) shows similar results. Once
again the region presently occupied by the retrograde group (rep-
resented by Sycorax) is highly unstable for values of α > 0.25.
However, both the inner and central groups (represented by
Miranda and Oberon) show lower instabilities than in Neptune’s
case, indicating that this system is at least marginally more ro-
bust. For α = 1, most of the test inner satellites survive the entire
simulation.

The next question we wish to address is the final eccentricity
distribution of those bodies which survived. This is shown in
Fig. 11 for Uranus and Neptune as function of the initial semi-
major axis. Top graphs correspond to α = 0.5 and bottom plots to
α = 0.25. The continuous lines represent the mean final eccen-
tricity 〈e〉, averaged over the bodies which remained bounded
to the primary. The broken lines above and below represent the
maximum and minimum values of the final eccentricity (i.e.,
emax and emin). Together, these three curves give a general idea
of the dispersion of the final orbits. The shaded areas to the
right of each plot mark the region where ejection was 100% ef-
ficient. Finally, the full circles denote the present orbits of the
real satellites around each planet.

Both Nereid and Uranus’ retrograde satellites lie within the re-
gion of extreme instability. The inner and central satellites have
final eccentricities which reach very high values (on the order of
0.2). Even though this in itself does not imply ejection or plane-

tary impact, it puts them in mutual crossing orbits. Figures 11c
and 11d, obtained with α = 0.25 show a better agreement with
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FIG. 11. Maximum, mean, and minimum eccentricity as a function of
semimajor axis, for test satellites of Uranus and Neptune, and for α = 0.25 and
α = 0.50. Black circles denote the present orbits of the real satellites. Shaded
region on the right corresponds to the region for which 100% of the initial
conditions were ejected or collided with the planet.

the observed distribution of satellites. Note that the present ec-
centricity of Nereid lies conveniently between the predicted val-
ues of emin and emax. This implies that even if this body originated
in a circular orbit at the beginning of the migration, its present
ellipticity could be explained by these perturbations. This would
give an alternative explanation to that suggested by Goldreich
et al. (1989), independent of hypothetical perturbations by
Triton.

In the case of Uranus, Fig. 11c shows that the retrograde bod-
ies have orbital eccentricities compatible with the values pumped
by the encounters when α = 0.25. In fact, the lower broken line
follows the observed dependence of e with semimajor axis for
the distant satellites of this planet. More importantly, the shaded
region corresponding to extreme instability now lies beyond the
upper limit of known satellites. We can therefore conclude that
the present distribution of bodies around both the outermost
planets seems to be much more compatible with a low value of
α, unless the satellites were formed by the end of the migration
process.

5.2. Jupiter and Saturn

As was expected from simulations of individual bodies, the
effects of the encounters on satellite systems of Jupiter and
Saturn are much less important. Even the case α = 1 does not
induce any significant number of escapes. All our test satellites
remained bounded to the primaries, even for values of the semi-

major axis as large as a = 0.13 AU (approximately 0.3RHill).
Figure 12 shows the final eccentricities of test satellites for both
ND NESVORNÝ

planets. Analogous to Fig. 11, continuous lines indicate 〈e〉,
while the broken lines show the maximum and minimum values
of final e. For comparison, full circles show the present observed
eccentricities and semimajor axes of the real satellites.

We note that although no escapes or planetary impacts were
detected in the swarms, the increase of eccentricities is signifi-
cant, especially for larger distances from the primary. This result
(already seen in Fig. 11 for Uranus and Neptune) is due to two
reasons. First, satellites with larger values of a are less bounded
to the system and, thus, more easily perturbed. Second, as shown
in Fig. 6, the number of close encounters increases with the plan-
etocentric distance. Both effects contribute to the trend observed
in Fig. 12. It is interesting to observe that the value of 〈e〉 at the
region of distant satellites is very similar to that of the observed
satellites.

The pumped values of e in the inner and central satellite re-
gions tell two different stories. For Jupiter, these values are fairly
small, with 〈e〉 never exceeding 0.05, and even emax remaining
limited by 0.1. Thus it seems that all these satellites, including
the Galilean group, should not be greatly disturbed by the plan-
etary migration, no matter how large. For the Saturn satellites,
however, the excitation of peculiar velocities is a bit larger. Al-
though the inner group is also relatively stable, the central region
(i.e., a ≈ 0.01 AU) has a mean eccentricity of about 0.1 with a
maximum reaching 0.4.

5.3. The Effects on the Inclinations

Before analyzing the evolution of the satellites’ inclinations
due to the encounters, we would like to study the sensitivity
of our results with respect to the reference plane chosen for
these inclinations. In other words, all simulations presented in
the previous sections were made by choosing satellite orbits
which were initially planar with respect to the invariable plane
of the outer Solar System. Since the obliquity of the planets
is not in the least negligible, these initial conditions do not
have any correspondence with planar orbits with respect to each
planet’s equator. So, it is important to see whether different ini-
tial inclinations yield different evolutions. To avoid confusion,
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we will denote the satellite’s inclination with respect to the in-
variable plane by I and that with respect to the planet’s
equator by i .

To test the dependence of the results on the inclination, we per-
formed six sets of numerical simulations of swarms of 100 fic-
titious satellites in circular orbits around Uranus. The initial
semimajor axes for all satellites were taken equal to 5 × 105 km
(�0.0033 AU). These initial orbits were chosen to be sufficiently
stable to avoid a large proportion of ejected bodies but still show
appreciable dynamical evolution for α = 0.25. Each swarm var-
ied by the inclination of its population with respect to the invari-
able plane; the initial values were taken equal to n × 30◦ with
n ∈ [0, 6]. For each swarm, we determined the number of es-
caped bodies and final average orbital elements of the surviving
satellites. Results are shown in Fig. 13. We can see very little
difference as a function of the initial I . Even though a certain
dispersion is noted, there is no overall large-scale variation of
the results.

Nevertheless, there are differences. For example, we note that
the percentage of removed satellites (top left) is larger for bodies
outside the invariable plane than those initially with I = 0. How-
ever, the remaining graphs do not show any significant differ-
ences in the final average values of the orbital elements. The main

consequence of this observation is that if a fictitious satellite is
initially placed in a planar orbit (I = 0) and its final inclination
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is given by I f then, on average, any other body placed with a
different initial inclination I0 �= 0 should have a final value equal
to approximately I0 ± I f . Thus, the quantity I f is a fairly good
indicator of the evolution of the inclination of a satellite’s orbit,
regardless of the plane with respect to which this inclination is
measured. In particular, independent of the planet’s obliquity,
there is little difference in placing a satellite in the equatorial
plane (i.e., i = 0) or in the invariable plane (i.e., I = 0). Since
it can be shown that there is no observed greater abundance of
direct to retrograde encounters, there should also be no greater
stability of retrograde satellites with regard to direct bodies. In
this regard, perturbations due to close passages are more demo-
cratic than those coming from solar effects (Nesvorný et al.
2002).

With this in mind, Fig. 14 now presents the final averaged in-
clinations for the same swarms of fictitious satellites discussed in
previous sections. In the case of Uranus and Neptune (Figs. 14c
and 14d), the different curves correspond to α = 1, 0.5, and 0.25
(see caption). Full symbols indicate the observed inclinations
of those real satellites in direct orbits. Empty symbols show
the retrograde satellites. In the latter case, the value of the in-
clination was plotted as |180◦ − I |. For inner bodies, inclina-
tions are measured with respect to the planet’s equator; for outer
and retrograde, these are measured with respect to the Laplace
plane.
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FIG. 14. Average final inclination of each swarm of fictitious satellites, as
a function of the initial semimajor axis. Full symbols mark present inclinations
of real bodies in direct orbits. Empty symbols show real retrograde satellites
(|180◦ − I |). For inner bodies, inclinations are measured with respect to the
planet’s equator; for distant satellites, these are measured with respect to the

Laplacian plane. Continuous lines correspond to α = 1, broken lines to α = 0.5,
and dotted lines to α = 0.25.
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We can see no large-scale orbital variation in the case of the
Jupiter and Saturn systems. Inner and central bodies remain prac-
tically in the plane and the final inclinations do not exceed ≈3◦.
Even in the retrograde region, the induced inclination jumps are
smaller than 10◦, showing that if these bodies are in fact cap-
tures, their original tilt with respect to the planet’s equator should
not have varied significantly. The cases of Uranus and Neptune
are, as usual, more drastic. The excitation in inclination grows
from very small values (close to the primary) to almost 90◦ for
a = 0.1 AU.

5.4. The Inner Satellite Group

Until now we have mainly discussed the stability (or lack
of it) through the increase in the eccentricity of initially circular
orbits. We have seen that the outer and retrograde satellite groups
are the most affected by the perturbations of the planetesimals’
encounters and, in the case of Uranus and Neptune, the satellites
have much difficulty surviving if the value of α is larger than
0.25. However, if several satellites are present in nearby orbits,
then it is not necessary for their eccentricity to reach parabolic
values for the group to be unstable. If the orbits are quasi-planar
and/or the masses sufficiently large, the system will be unstable
provided the pericentric distance q of the outermost body is
smaller than the apocentric distance Q of the innermost satellite,
as long as there are no mean motion resonances between them.
Thus, in multiple satellite systems, bodies S1 and S2 on initially
circular orbits, with semimajor axes a1 < a2, can be considered
potentially unstable if

(a1 + 
a1)(1 + e1) > (a2 − 
a2)(1 − e2), (7)

where ei are the final eccentricities and 
ai > 0 are the orbital
changes in semimajor axis induced by the encounters with the
planetesimals. Notice that this condition is much more subtle
than simply requiring ei > 1 and thus should be a much better
indicator of the stability of the inner groups of satellites of the
outer planets.

Figure 15 shows planetary distance versus semimajor axis
for Uranus and Neptune’s satellites, and for two different val-
ues of α. Black circles mark the position of the real satellites.
For Uranus, letters M, A, U, T, O denote the locations of Mi-
randa, Ariel, Umbriel, Titania, and Oberon. For Neptune, letters
P and T correspond to Proteus and Triton. The dotted line is the
identity function. The continuous curves above and below this
line represent the average induced apocentric distance, Q̄(a),
and the average induced pericentric distance, q̄(a), respectively.
These quantities are defined as

q̄ = (a − 
a)(1 − 〈e〉)
(8)

Q̄ = (a + 
a)(1 + 〈e〉),

where 
a is the final variation in semimajor axis, and 〈e〉 the av-

erage final eccentricity for satellites with the same initial a. Thus,
any satellite with a given initial a will exhibit planetocentric ra-
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tion of semimajor axis, for Uranus and Neptune. Black circles denote real satel-
lites (see text for details). Top graphs are constructed with α = 0.5, bottom plots
with α = 0.25.

dial incursions more or less delimited by the continuous lines in
Fig. 15. This implies that any two satellites with initially a1 < a2

will be unstable due to mutual perturbations if Q̄(a1) ≥ q̄(a2),
and they will be stable otherwise. It is worth recalling that this
stability criterion is not rigorous, and the satellites may coexist
in overlapping orbits provided: (i) their masses are very small,
(ii) their mutual inclinations are large, or (iii) there exist a mean
motion commensurability between them.

For α = 0.5 (Fig. 15, top graphs) we note that the present dis-
tribution of real satellites does not seem to satisfy this condition
for stability. This is clear from the results for Uranus, although
only marginally for Neptune. In the former case, all the satellites
overlap the orbits of those with similar a. For Neptune, however,
things are not so evident. Proteus has an induced apocentric
distance which is practically equal to the pericentric distance of
Triton, but the overlap is marginal. The two bottom plots show
the same results, only now for α = 0.25. We can see that the
radial incursions in this case are much more restricted, and the
present sequence of semimajor axes of the Neptune satellites
have a separation which is very stable. For Uranus, however,
even in this plot the stability seems compromised, especially for
the pair Titania–Oberon whose orbits still overlap. Nevertheless,
we must remember that they were also significantly affected by
tidal effects from the primary (e.g., Dermott et al. 1988) so their
original separation in semimajor axes could have been much
different in the past.

As an example, Fig. 16 shows the evolution of three fictitious

satellites with initial semimajor axes similar to Miranda, Ariel,
and Umbriel. The value of α was taken equal to 0.35. The shaded
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FIG. 16. Numerical simulation of fictitious satellites (α = 0.35) with initial
conditions similar to Miranda, Ariel, and Umbriel of the Neptune system. The
shaded areas are of each body mark the region with instantaneous planetary
distance between a(1 − e) and a(1 + e). Note the overlapping of orbits for both
exterior satellites at t > 105 years.

area of each body indicates the region of planetary distances
inside the range r ∈ [a(1 − e), a(1 + e)]. Note that the orbits of
the two outermost satellites start to overlap after 105 years.

So, once again we have evidence that values of α > 0.25
would induce perturbations too large to be compatible with the
observed inner satellite systems. This is important because we
are now treating bodies whose primordial origin from the cir-
cumplanetary disk is fairly certain. Thus, unlike the outer and
retrograde bodies, there is little doubt that these satellites were
present during the whole process of planetary migration and
evaporation of the residual rocky disk.

Finally, a similar analysis for the Jupiter and Saturn inner
systems show very little radial incursions of the real satellites,
and even for α = 1 there is no observed overlap in the orbits of
adjacent satellites. Thus, once again we note that these groups are
extremely stable. This confirms our previous results (Section 5.2)
in the sense that both these planets are massive enough to protect
their satellites from external perturbations originating from even
large values of α.

6. CONCLUSIONS

In this paper we have discussed the stability and orbital evo-
lution of satellite systems of the major planets under the pertur-
bative effects of close encounters with massive planetesimals.
The dynamical characteristics of these encounters were obtained
from a numerical integration in which we simulated the post-
formation planetary migration due to the scattering of the resid-
ual disk material by the already formed planets (Fernández and
Ip 1984). By assigning different masses to these planetesimals,

we were able to relate different magnitudes of the secular varia-
tion in the semimajor axes of the planets (defined by a coefficient
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β) with the gravitational perturbations of the planetesimals on
fictitious planetary satellites.

Nevertheless, we found that the dynamical evolution of these
fictitious bodies corresponds to a random walk in the orbital
element space. As such, the magnitude of the net variation of
the orbits is a function not only of β, but also of the domi-
nant planetesimal mass in the original disk m̄. Thus, although
the perturbations of the fly-bys scale with β, their effects are
proportional to a new parameter α = β

√
m̄/0.1M⊕.

If we assume that the large-body component (composed of
Mars-size bodies) dominated the mass of the residual disk, then
our results seem to indicate that the presently accepted change
in the orbits of Uranus (
aUra ≈ 3 AU) and Neptune (
aNep ≈
7 AU) is too large and are not compatible with the observed
distribution of satellites if they were formed/captured before the
migration began. In fact, even half this orbital change already
causes sufficient instabilities to eject all the outer and retrograde
satellites (including Nereid), plus originating mutual encounters
between the inner satellite groups of both planets. Nevertheless,
the real bodies are consistent with a migration whose magnitude
only spanned one quarter of this value (i.e., 
aUra ≈ 0.7 AU and

aNep ≈ 1.7 AU). Notwithstanding these results, the Jupiter and
Saturn systems are not so susceptible to perturbations from pass-
ing planetesimals. Since the satellites are located deeper in the
energy well, and the number of encounters is much smaller than
for the outermost planets, practically all the simulated bodies
remained in stable orbits.

On the other hand, if the real value of m̄ was much smaller
than 0.1M⊕, then larger magnitudes of migration are possible.
However, even if the disk was made up of bodies of 1000-km
size, nominal migration still implies values of α ≈ 0.2. It is
interesting to note that such a value for Uranus and Neptune is
not only consistent with the present distribution of satellites but
also may help to explain some of their orbital characteristics.
For Uranus, the eccentricities and inclinations of the irregular
satellites show a good agreement with the values induced by
the encounters, supposing initial circular and planar orbits. A
similar result is noted for Nereid. The perturbations generated
by this migration could be sufficient to excite an initially circular
and planar Nereid to its present orbit, thus giving an alternative
explanation for the origin of this body’s dynamics, different from
the scenario proposed by Goldreich et al. (1989).

The parameterα can also have a different interpretation. Imag-
ine that the residual disk had a very marked bimodal mass dis-
tribution, which consisted in a very large quantity of very small
bodies (e.g., 1- to 10-km size) and a number Nmars of Mars-size
planetesimals. Although both populations contributed equally
to planetary migration, the instabilities of the satellite systems
was mainly determined by the fly-bys of the large-size bodies.
Thus, in the case β = 1, and even if m̄ � 0.1M⊕, the parameter
α can be written as

√

α = Nmars

1000
. (9)
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With such a relationship, we obtain that a value of α = 0.25
corresponds to Nmars ≈ 60. This means that even if the original
disk was dominated by small bodies, a relatively small number
of Mars-size planetesimals could have introduced significant
instabilities in the satellite systems of the outer planets. Conse-
quently, even in the case m̄ � 0.1M⊕, the results presented in
this paper may still be valid and could very well yield valuable
constraints on the end product of the planetary formation pro-
cess and/or alternative explanations for the present dynamical
structure of several of the irregular satellites of the outer planets.

Last of all, we must recall that our model is approximate. We
have not included the solar perturbations or oblateness effects
in the evolution of the satellites. Furthermore, the dynamics of
the planetesimals, the migration of the planets, and the evolu-
tion of the satellites were all treated independently and not in
a self-consistent manner. However, it is important to point out
that this paper is essentially exploratory in nature and, thus, cer-
tain assumptions and approximations are unavoidable. We have
for the first time explored the stability of satellites in the early
Solar System and used it to constrain the large-size component
of planetesimals at 10–35 AU and/or the magnitude of plane-
tary migration. We wonder whether more elaborate models and
future research will confirm or negate our findings.
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