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Mean Motion Resonances in the Trans-neptunian Region

I. The 2:3 Resonance with Neptune
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The stability of the 2:3 mean motion resonance with Neptune
is systematically explored and compared to the observed resonant
population. It is shown that orbits with small and moderate am-
plitudes of the resonant angle are stable over the age of the Solar
System. The observed resonant population is distributed within the
stability limits. There exists an interval of large resonant ampli-
tudes, where orbits are marginally unstable. Resonant objects start-
ing in this interval may leave the resonance by slow increase of
their resonant amplitudes on a time scale of several billion years.
These objects eventually attain Neptune–crossing trajectories and
contribute to the flux of Jupiter–family comets. The number of ob-
jects leaking from the 2:3 resonance per time interval is calibrated
by the number of objects needed to keep the Jupiter–family comets
population in steady state. This allows us to compute the upper limit
of the number of resonant objects with cometary size. The effects of
collisions and mutual gravitational scattering are discussed in this
context. c© 2000 Academic Press
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Edgeworth (1949) and Kuiper (1951) suggested that the S
System extends beyond Neptune in the form of a belt of sm
bodies. Later, when Fern´andez (1980) proposed that such a b
(hereafter we refer to the belt as the Kuiper Belt—KB) can b
reservoir of Jupiter–family comets, the interest in providing
direct observational evidence of the belt increased. The dis
ery of 1992 QB1 by Jewitt and Luu (1993) was soon succee
by other observations and now the number of known Kuiper B
objects (KBOs) is nearly 200.

The stability of the trans–Neptunian region has been num
ically studied by Levison and Duncan (1993) and Holman
Wisdom (1993). Their results were extended by Duncanet al.
(1995) who computed a detailed map of stable/unstable reg
1 Present address: Observatoire da la Cˆote d’Azur, BP. 4229, Bd. de la Obser-
vatoire, 06304 Nice Cedex 4, France.
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semi-major axis interval over 4× 109 years. The orbits starting
at perihelion distancesq less than 35 AU were found unstab
unless they were associated with some mean motion reson
(MMR) with Neptune. The orbits withq> 35 AU were found
stable unless they were related with perihelion or node sec
resonances (mainlyν8, ν17, andν18 located at 40<a< 42 AU
according to Kneˇzević et al.1991).

There was no similar work published until now on the stabil
of the asteroid belt over the age of the Solar System due to
relatively short orbital periods of asteroids and the necessit
use a short time step in their simulations. If the effect of in
planets (Venus to Mars) also has to be taken into account, the
step of asteroid simulation is a factor of 25 smaller than wha
used for the KB; i.e., the computational need for a 4× 109-year
simulation in the KB is roughly equal to the computational ne
of a 4

7
4 Byr

25 = 90 Myr simulation in the asteroid belt (the facto
4/7 accounts for seven planets used in the asteroid belt ag
four planets used in the KB).

Nevertheless, considerable progress has been made o
long–term stability of asteroidal orbits using a different a
proach. In this approach, the chaotic evolution of asteroid orb
elements (and secular frequencies) is numerically compute
the time interval covered by simulation (usually not exceed
108 years) and then the expected chaotic evolution of orbits
longer time interval is estimated. Orbits are judged to be sta
if the chaotic change of orbital elements (or frequencies) ext
olated to 4× 109 years is small. There is no practical need
studying the stability of minor bodies with the current config
ration of planets on longer time spans as the planetary orbits
physical conditions have been substantially different during
Solar System formation.

In particular, the simulated time interval is usually divid
in several sub-intervals and the motion is approximated b
quasi–periodic evolution (which would be an exact solution
the integrable system) on each of them. This quasi–peri
approximation can be either explicitly computed (Laskar 19
or one can rely only on the evaluation of motion integrals.
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RESONANCES IN THE TR

The integrals of motion are eitherproperorbital elements or
proper frequencies depending on their physical meaning. T
change in the proper elements and frequencies between
secutive sub-intervals is due to the chaoticity of motion an
frequently referred to as thechaotic diffusion. The local rate of
chaotic diffusion is then closely related to the orbital stabil
and simple models have been devised in specific cases (Mu
and Holman 1997).

We use in the following the approach of Laskar (1994) a
Morbidelli (1996) who define the motion integrals as either
extrema or average of orbital elements computed on the
intervals. This method allows for the detection of slow chao
evolution of orbits and additionally has a clear astronomical
terpretation. The relative change in frequencies (Laskar 19
1999) is also a widely used indicator of the rate of chaotic dif
sion. The computation of frequencies usually permits the id
tification of resonances responsible for chaos.

Another useful tool for the determination of the orbit
stability/instability is the maximum Lyapunov Characteris
Exponent (LCE) which measures the rate of divergence of ne
trajectories. It is defined as limt→∞ ln1(t)/t , where1(t) is the
norm of the variational vector at timet (Oseledec 1968, Benetti
et al.1976). Although the relationship of the LCE to the chao
diffusion and the orbital stability is a complicated proble
(Morbidelli and Froeschl´e 1995), evaluation of the LCE fre
quently helps in identifying the most evident irregular and p
sibly unstable orbits. It is also clear that orbits with a very sm
LCE are likely to be stable over long time intervals.

This paper deals with the 2:3 MMR with Neptune. This re
onance is of special interest as from 191 KBOs currently re
tered in the Asteroid Orbital Elements Database of the Low
Observatory (September 1999—ftp://ftp.lowell.edu/pub/el
astorb.html), 68 objects fall within a small semi-major axis
terval around 39.45 AU, where this resonance is centered.
resembles the situation in the outer asteroid belt (3.27<a<
4.5 AU), where from 258 numbered asteroids some 120
jects known as the Hilda group are situated in the 3:2 MM
with Jupiter. In both cases the resonant space is populated
densely than the neighboring non-resonant space; this is us
believed to be a consequence of the Solar System early evol
(Malhotra 1995, Liou and Malhotra 1997, Hahn and Malho
1999).

The long-term stability of Pluto’s 2:3 resonant orbit has be
confirmed in numeric simulations of Kinoshita and Nakai (198
and Sussman and Wisdom (1988). It turned out that desp
positive LCE (∼10−7 year−1) Pluto’s orbit is stable over the ag
of the Solar System.

Concerning the global stability of the 2:3 Neptune MMR, t
works based on averaged circular (Morbidelliet al. 1995) and
non-averaged circular (Malhotra 1996) models indicated
the central resonant space is stable, but both were missin
important ingredient—complete perturbations of the outer

ant planets other than Neptune—in order to provide sufficien
reliable stability boundaries.
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Denoting the resonant angle of the 2:3 Neptune MMR by

σ = 2λN − 3λ+$, (1)

whereλ and$ are the mean and perihelion longitudes andλN

is the mean longitude of Neptune, the resonant motion is c
acterized by oscillation ofσ around 180◦. This oscillation is
alternatively called thelibration as opposed to the non-resona
situation whereσ circulates. In the case of Pluto the amplitu
of σ libration (Aσ ) is about 82◦. Additionally, Pluto is known
to reside in the Kozai secular resonance, where the argume
perihelionω librates about 90◦ with an amplitude (Aω) of 22◦.

The stability boundaries in the 2:3 Neptune MMR as a fu
tion of the resonant amplitudesAσ and Aω were computed by
Levison and Stern (1995). They found that for inclinations si
lar to Pluto’s inclination (∼17◦) the orbits starting withAσ < 50◦

were stable and the orbits withAσ > 120◦ were unstable ove
4× 109 years. For intermediateAσ , usually a smallAω was
needed for orbital stability. Similarly, Duncanet al.(1995) have
shown that the motion ate= 0.2 is stable over the age of th
Solar System provided thatAσ < 70◦. The stability of the 2:3
MMR was further investigated by Morbidelli (1997) with a
additional concern in the number of escaping objects and
relation to Jupiter–family comets. This later work confirmed
finding of Duncanet al.(1995) that the chaotic evolution on th
margin of stable region mostly affectsAσ .

We investigate the 2:3 resonant dynamics aiming our st
at a detailed and global understanding of chaotic and reg
motions inside this resonance. Our approach closely foll
the work of Nesvorn´y and Ferraz-Mello (1997b). In Section
we describe the setup of numerical experiments. The dyn
ics of the 2:3 Neptune MMR at low inclinations is discussed
Section 3. We identify several interior resonances respons
for chaos and estimate the time scales on which they des
lize orbits. Based on this analysis we determine the exten
the region from which bodies are currently leaking to Neptu
crossing orbits (Section 4). Then we scale the escape ra
get the correct number of Jupiter–family comets and const
the current resonant population (Section 5). The effect of c
sions and dynamic scattering within the resonance is studie
a simple model in Section 6. In Section 7, we extend the pre
study by exploring the orbital dynamics at large inclinations.
nally, we discuss the orbits of observed KBOs in the 2:3 Nept
MMR (Pluto and Plutinos) in Section 8.

This paper is the first part of the work that collects our res
on the mean motion resonances in the Kuiper Belt. The sec
paper (Nesvorn´y and Roig 2000) is devoted to the 1:2 and 3
Neptune MMRs and the global structure of MMRs in the 35
50-AU semi-major axis interval.

2. THE SET-UP OF NUMERICAL EXPERIMENTS
tlyThe resonant value of the semi-major axis isares= 39.45 AU.
The resonant dynamics are characterized by coupled oscillations
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FIG. 1. The resonant amplitudeAσ (in degrees) of the 2:3 Neptune MMR
The gray area roughly corresponds to the strongly unstable motion atAσ > 120◦
(Morbidelli 1997).

of the semi-major axis aboutares and ofσ (Eq. 1) about 180◦

with a typical period of 20,000 years. We also recall that ot
important characteristics of the 2:3 MMR is the presence of
Kozai resonance (ate= 0.25 for small Aσ—Morbidelli et al.
1995). This secular resonance concerns libration ofω around
90◦ or 270◦ and forces coupled variations of thee andi with a
typical period of several million years.

According to numerical simulations (Duncanet al. 1995,
Morbidelli 1997) the orbits in the 2:3 MMR with the libratio
amplitudeAσ larger than about 120◦ are unstable in relatively
short time intervals. In Fig. 1 we show the dependence ofAσ on
a ande. The amplitudes have been computed numerically
small i and initialσ = 180◦ in a model with four outer planets
The maximum excursion ofσ from 180◦ in 106 years was taken
asAσ .

The grey region in Fig. 1 schematically delimits strongly u
stable orbits forAσ > 120◦. As we show later, the actual size o
the stable resonant region is somewhat smaller than the ce

white area in Fig. 1 due to the presence of secular resonances and
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ducing fake frequencies in the Fourier spectrum (the problem of

the possibility of close approaches to Uranus at largee. More-

FIG. 2. The estimate of the maximum LCE (a) and the minimum distance to Neptune (b) in the 108 year numerical simulation of orbits in the 2:3 Neptu
MMR. The initial inclinations were 5◦. See text for the description of other initial elements of the test particles. The separatrices (bold border lines),
centers (bold vertical line at 39.45 AU), and the main inner resonances (Kozai andν8 are denoted by full thin lines;ν18, 4:1, and 5:1 three-body resonances
dashed; the secondary 5:1 resonance ate< 0.05 is denoted by sig5) were computed by a semi–numerical method. The test particles escaping from the 2:3 r
before the end of the integration (in yellow) have simultaneously large LCE estimates and small minimum distances from Neptune. The most regularts, with
LCE ≤10−6.5 year−1, are located in the interval of about 0.3 AU centered at the libration centers and have eccentricities between 0.05 and 0.3 (blue/d
(a)). There are no regular orbits abovee= 0.35 due to the overlap ofν8 andν18. The best angular protection against approaches to Neptune happens at the li
centers for 0.2< e< 0.35 where the minimum distance is larger than 15 AU. The orbital elements of known Plutinos (large dots) and Pluto (⊕) were taken from
Nesvorný et al. (2000).

FIG. 8. (a) The estimate of the maximum LCE in the 2:3 Neptune MMR. (b) The minimum distance to Neptune. The initiala was chosen at 39.41 AU, whic

frequency aliasing is described in Presset al.1992).
corresponds toAσ ∼ 60◦. See text for the definition of other initial elements. T
were computed forAσ = 0. The orbital elements of known Plutinos (large do
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over, also the range ofa corresponding to motions stable ov
4× 109 years covers a somewhat smaller interval than that in
cated in Fig. 1. There exists an interval of marginal instability
about 100◦–120◦ (we define the marginally unstable region a
specify its range more precisely in Section 4), where the cha
evolution, although slow, is sufficient to enlargeAσ beyond
120◦ (i.e., to the strongly unstable amplitudes) in less than 4×
109 years.

Following the approach used in studies of the first–order
vian resonances in the main asteroid belt (Ferraz-Mello 19
Nesvorný and Ferraz-Mello 1997b), we calculate the maximu
LCE and estimate the rate of chaotic diffusion for orbits on
regular grid of initial actionsa, e, i .

We have run simulations for two sets of initial actions:

(1) 1010 test particles with 38.8≤ a ≤ 39.8 AU (1a=
0.01 AU), e= 0.01, 0.05, 0.1, 0.15, 0.2, 0.23, 0.25, 0.27, 0.3,
0.35 (101 test particles at eache), andi = 5◦;

(2) 405 test particles witha = 39.41 AU, 0≤ e≤ 0.4 (1e=
0.005), and 5◦ ≤ i ≤ 25◦ (1i = 5◦, 81 test particles at eac
value ofi ).

In the first set we explore the resonant orbits with smalli and in
the second set we study the dynamics at largei .

The initial angles of test particles were chosen so thatσ =
180◦, ω = 90◦, andÄ−ÄP = 0, whereÄ andÄP are the node
longitudes of a test particle and Pluto, respectively. In this w
the plane of initial conditions intersects the libration centers
both the 2:3 and Kozai resonances.

In both runs the test particles were numerically integrated w
four outer planets (Jupiter to Neptune) for 108 years by the sym-
metric multi-step integrator (Quinlan and Tremaine 1990). T
initial conditions of the planets were chosen at their positio
at JD 2449700.5 with respect to the ecliptic plane and equi
at epoch J2000. The time steps of 40 days for the planets
200 days for the test particles were used. In the course of i
gration, a run–time digital filter (Quinnet al.1991) was applied
to a expισ , eexpι$, and i expιÄ (ι = √−1), and the initial
sampling of 5 years was augmented to 2500 years without in
he separatrices (full lines) and libration centers (dashed line) of the Kozai resonance
ts) and Pluto (⊕) are shown.
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The actual procedure consisted of a consecutive applica
of time–domain FIR filters (Presset al. 1992). First, one filter
(filter A) was used two times increasing the sampling by a f
tor of 100 and then a second filter (filter B) was additiona
applied, increasing the sampling by a factor of 5. See Nesvy
and Ferraz-Mello (1997a) for the specifications of both filte
With this procedure, all periods smaller than 5000 years w
suppressed and all periods larger than 104 years were retained
In addition to the equations of motion, the variational equati
also were numerically integrated using the symmetric multi-s
method. The variational vector was periodically renormalize
order to avoid the computer overflow (Benettinet al.1976). This
allowed us to estimate the maximum LCE for all test particl

3. THE LOW–INCLINATION RUN

3.1. The Maximum LCE

The estimate of the maximum LCE for each test particle w
computed as ln1(t)/t with t = 108 years, and was plotted a
a function ofa and initiale in Fig. 2a for the first set of initia
conditions. We have compensated in this figure for short–pe
variations by a shift of 0.145 AU ina so that the test particle
with smallestAσ are near the true libration center at 39.45 A
This shift mainly accounts for the difference between the
stantaneous initiala and its average over the orbital period
Jupiter. This difference is about the same for all test parti
(except at very smalle where the location of the true libratio
center strongly depends ona). Such correction was not intro
duced fore (andi ) which was less affected by the short–peri
variations and which had initial values within 0.01 (and 2◦) of
their averages over 107 years. In Fig. 2b, the minimum distanc
of test particles to Neptune in 108 years are shown.

The color coding in Fig. 2a was chosen so thatyellowcorre-
sponds to the initial conditions of test particles that escape
Neptune–crossing orbits in the integration time span;red cor-
responds to the initial conditions for which the estimate of
LCE on 108 years clearly converges to its limit value and the c
responding orbits have non-zero LCEs.Bluecorresponds to the
initial conditions of the most regular orbits. For these, there
no (evident) convergence to a non-zero value and log(ln1(t)/t)
linearly decreased with logt , even if in many cases there a
peared characteristic cusps indicating local hyperbolic struct
in the phase space (Morbidelli and Nesvorn´y 1999).

In Fig. 2, we plot the separatrices and libration centers of
2:3 MMR and several secular resonances, which were fo
inside the 2:3 MMR:ν8 (the 1:1 commensurability of the mea
perihelion frequencies of a minor body and Neptune—full l
near separatrices marked nu8),ν18 (the 1:1 commensurability
of the mean nodal frequencies of a minor body and Neptun
dashed line marked nu18), and the Kozai resonance (the
commensurability of the mean perihelion and node frequen
of a minor body—full line intersecting the libration center ate=

0.25, marked Kozai). Also the secondary resonance is sho
where the frequency ofσ is a factor of 5 larger than the frequenc
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of the perihelion longitude (full line ate< 0.05 marked sig5).
Other secondary resonances, where the ratios of the reso
and perihelion frequencies are smaller, are located at very s
e. The location of all these inner resonances in the 2:3 MM
and their effects on long-term dynamics of resonant bodies
been known since Morbidelli (1997).

Apart from the above inner resonances, we have calculated
commensurabilities between the resonant frequency and the
quency of Uranus–Neptune quasi–resonance, i.e., the frequ
of the angleλU − 2λN that circulates with a negative derivativ
and the period of 4230 years. This type of resonance involv
two perturbing bodies and a minor body was recently sho
important in clearing the 2:1 MMR with Jupiter and openin
the Hecuba gap ata = 3.27 AU in the asteroid belt (Ferraz
Mello et al.1998). We plot the commensurabilities 4:1 and 5
between the resonant frequency and 1/4230 year−1 in Fig. 2a
(dashed lines marked 4:1 and 5:1).

At these “three–body” resonances, the LCE is modera
larger than in the background. While the 4:1 resonance has
LCE about 10−5.6 year−1, more than a factor of 10 larger tha
in the background, the 5:1 resonance is weaker, with the L
rising from the background by a factor of 100.5. Although the
contrast of paper–printed version of Fig. 2a is not as good
on the computer screen, one can note that the anomalous
value follows the lines of the 4:1 and 5:1 resonances prov
them to be important for orbital dynamics on long time scale

The inner resonance locations in the 2:3 Neptune MMR w
computed by the semi–numerical method of Henrard (1990)
frame of the averaged, spatial (i 6= iN = 0) and circular (eN = 0)
models. As the full exposition of this method goes beyond
scope of this paper, we refer the reader to Moonset al. (1998),
where the description of its application to MMRs can be foun

The extent of regular and weakly chaotic trajectories is clea
delimited in Fig. 2a and corresponds to the orbital eleme
plotted in blue and dark red. The corresponding resonant or
stay phase–protected from close encounters with Neptune in
whole integrated time interval (Fig. 2b). The central reson
area is enclosed by theν8 and ν18 secular resonances whic
overlap and generate strong chaos at, otherwise stable,
Aσ . The upper eccentricity limit of the blue/dark red region
about 0.35 coincides with the lower limit of chaos generated
this overlap, and moreover, fore> 0.35 the secular oscillations
of e drive orbits to approach Uranus at distances less than 5
(aU = 19.22 AU).

The orbits starting atAσ > 130◦ are usually fast driven (in a
most several 107 years) to the borders of the 2:3 MMR. Ther
while σ alternates between libration and circulation, the t
particles’ eccentricities chaotically evolve toward the Neptun
grazing limit (e∼ 0.2) or, if e’s are already initially large, the
particles suffer close encounters with Neptune and are extra
from the resonance. This is the typical fate of the test partic
their initial orbital elements are shown in yellow in Fig. 2.

◦
wn
y

Conversely, for orbits starting withAσ < 100 and 0.05< e<
0.25 (note that this limit is eccentricity dependent for largere:
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Aσ < 60◦ for e= 0.3, and reduces to zero fore= 0.35), the LCE
decreases with time nearly to 10−7 year−1 showing in many case
no strong tendencies to converge. This however depends on
values of initiala ande. For 0.1< e< 0.2, the 5:1 three-bod
resonance influences orbits withAσ ∼ 60◦ and makes their LCE
converge to about 10−6.7 year−1. For most other initialAσ and
e< 0.2, log ln1(t)/t linearly decreases with logt with frequent
“cusps” typical for the situation, where the trajectory pas
close to hyperbolic resonant points. Although we do not iden
the true nature of weak resonances responsible for this beh
(a detailed identification would be literally a watchmaker’s w
in view of the number of frequencies present in the proble
it may be expected that the convergence of ln1(t)/t toward a
positive value happens in an extended simulation. Our g
is that the measure of trajectories in the 2:3 Neptune M
with e< 0.2 having the LCE smaller than 10−8 year−1 is very
small.

Concerninge> 0.2 and small to moderateAσ , one can discern
a reddish color at the corresponding initial conditions in Fig.
This is a consequence of the fact that ln1(t)/t converges to
its asymptotic value which is larger than 10−6.8 year−1. Apart
from the 5:1 three-body resonance, it is the Kozai resona
that causes the chaos there, because the initial conditions
chosen so that its center at 90◦ and the corresponding libratio
space could be sampled. The Kozai resonance is narrow for
inclinations (1e∼ 0.05 fori = 5◦) and as we have noticed in th
simulation the test particles withi = 5◦ almost never remain fo
a long time with stableω librations. Theirω typically alternates
between circulation and libration on the time scale of sev
million years. This behavior results in the positive LCE, of ab
10−6.6 year−1, calculated in our simulation for the test partic
starting neare= 0.25.

The resonant space available for regular motion (we use
word “regular” as a synonym for “weakly chaotic” rather th
to refer to true regularity in the sense of zero LCE) shrinks
e> 0.25 and disappears fore= 0.35. As shown in Fig. 2a, th
most regular behavior happens ate= 0.3, above the Kozai an
below the 5:1 resonances, and a very smallAσ .

On the boundary between the escaping (yellow) and r
lar (blue) orbits, a number of initial conditions in an interv
of some 0.1 AU ina have an intermediate value of the LC
(10−6–10−5 year−1, light red in Fig. 2a). We have noticed th
these orbits chaotically evolve in 108 years, which suggests th
they might be destabilized in longer time intervals (for this
is sufficient to rise theirAσ above 120◦–130◦). The simulations
of Morbidelli (1997) showed the existence of such process.
refer to this interval as the “marginally unstable region.”

At this point we would like to draw the reader’s attenti
to the inner structure of the marginally unstable region.
4:1 three-body resonance plays an important role here. Foe=
0.15, this resonance furnishes a “smooth” passage betwee
weakly chaotic (Aσ < 110◦) and escaping (Aσ > 130◦) orbits.

For e= 0.2 the situation slightly changes as the 4:1 resona
(now approximately at 105◦< Aσ < 120◦) is separated from the
NS–NEPTUNIAN REGION I 287
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escaping initial conditions withAσ > 130◦ by a narrow interval
of weakly chaotic motion (at 120◦< Aσ < 130◦). This latter re-
gion, however, does not act as a true barrier in the phase s
(Section 4). Although slightly retarding the evolution from t
4:1 resonance toAσ > 130◦, orbits can efficiently “leak” through
this region to largerAσ . The 4:1 three-body resonance joins t
escaping region ate= 0.3. All orbits with Aσ > 110◦ are un-
stable within 108 years, and already forAσ = 70◦ the orbital
elements are visibly irregular suggesting the enlargement o
marginally unstable area ate= 0.3.

The minimum distance from Neptune (Fig. 2b) ranges
tween 7 and 25 AU for those test particles surviving 108 years in
the resonance. While fore∼ 0.05–0.1, the minimum distance
are as low as 10 AU, fore= 0.3 and smallAσ the resonant–
protection mechanism assures a 20 AU separation from Nep
This is a consequence of resonant bodies having conjunc
with Neptune at aphelion of their orbits and the fact that m
elongated orbits have larger aphelion distances (Nesvorn´y and
Roig 2000). For example,ares(1+ e)− aN = 17.3 AU for e=
0.2, which is in good agreement with the numeric result
Aσ = 0 in Fig. 2b.

In both panels of Fig. 2 we show the semi-major axis and
centricity of Pluto (⊕) and Plutinos (large dots) at the interse
tion of their trajectories withσ = 180◦ andω = 90◦. These data
were taken from Nesvorn´y et al. (2000) and reflect the knowl
edge of Plutinos’ orbital distribution in March 1999 (Mino
Planet Center Orbital Database, http://cfa-www.harvard.e
cfa/ps/lists/TNOs.html). In brief, Nesvorn´y et al. (2000) per-
formed a numeric simulation of 33 Plutinos (and Pluto) and
termined their smoothed orbital elements at the moment w
σ = 180◦ andω = 90◦ simultaneously. Advancing the orbita
elements to this manifold is well suited for the present co
parison as the initial conditions in Fig. 2 also haveσ = 180◦

andω = 90◦. There is one symbol per body in Fig. 2 corr
sponding to the first intersection with the manifold. Due to
symmetry of the 2:3 MMR with respect to the libration ce
ters, the next intersection of a trajectory withσ = 180◦ would
be symmetrically placed on the opposite side of the libra
centers.

The distribution of Plutinos in the (a, e)–plane samples th
region 39.25<a< 39.7 AU and 0.08< e< 0.34 which corre-
sponds reasonably well with the extension of the central reg
region of the 2:3 MMR. There are two regions in Fig. 2 th
look relatively unpopulated. The first one is in the center of
2:3 MMR at 39.35<a< 39.6 AU and 0.15< e< 0.3. Here, ac-
cording to Nesvorn´y et al. (2000), the libration amplitudes o
Plutinos could have been excited by Pluto’s gravitational swe
ing effect.

The second unpopulated region is located at 0.05< e< 0.08.
At these eccentricities, orbits are unaffected by the chaos u
the 5:1 secondary resonance, where the 2:1, 3:1, and 4:1
ondary resonances andν18 are simultaneously present. In fac
nceno resonant objects are known withe< 0.08. We return to this
issue in Section 8.
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3.2. The Chaotic Evolution of Actions and Frequencies

To measure the chaotic evolution of orbital elements we h
computed, for each integrated test particle, the maxima of filte
σ , e, andi on two consecutive intervals of 45 Myr each (i.e., t
total length of 90 Myr). These quantities do not change with ti
in the case of quasi–periodic motion. We used a larger wind
interval (45 Myr) than Morbidelli (1997; 10 Myr) expecting t
improve the accuracy.

The following quantities were computed,

δAσ =
∣∣σ (2)

max− σ (1)
max

∣∣
δe= ∣∣e(2)

max− e(1)
max

∣∣ (2)

δi = ∣∣i (2)
max− i (1)

max

∣∣,
where the indexes 1 and 2 refer to maxima obtained in the
and second intervals, respectively. In addition, we smoothed
above quantities over initial conditions with the samee by a 5–
point (0.048 AU) running window ina. The resulting smoothed
values ofδAσ (Fig. 3a),δe (Fig. 3b), andδi (Fig. 3c) show how
much the orbital elements change, on average, due to the ch
evolution of trajectories on the time interval of 45 Myr.

To measure the chaotic evolution of frequencies we used
quency analysis (Laskar 1999). The frequenciesfσ , f$, and fÄ
were determined from the Fourier spectra ofa expισ , eexpι$
and i expιÄ, respectively, on two consecutive intervals
45 Myr using the algorithm of Frequency Modified Fouri
Transform (FMFT2; Šidlichovský and Nesvorn´y 1997). While
for f$ and fÄ this meant the determination of the leading pe
frequency in the spectra ofeexpι$ andi expιÄ, respectively,
the technical procedure forfσ was somewhat more involve
due to the large number of terms with similar amplitude in
Fourier spectrum ofa expισ .

The resonant, perihelion, and node frequencies determin
this way do not change with time in the case of quasi–perio
motion and change only due to chaotic evolution of orbits. T
is why we used

δ fσ =
(

f (2)
σ − f (1)

σ

)/
f (1)
σ ,

δ f$ =
(

f (2)
$ − f (1)

$

)/
f (1)
$ , and (3)

δ fÄ =
(

f (2)
Ä − f (1)

Ä

)/
f (1)
Ä

as measures of chaotic diffusion in frequencies.
We have additionally attempted to reduce the effect of p

odic oscillations of frequencies known as the problem of n
harmonics (a consequence of a finite time window used
the Fourier transform—Nesvorn´y and Ferraz-Mello 1997a). W
compute

〈δ f (ak)〉2n+1= 1

2n+ 1

j=k+n∑
|δ f (aj )|− 1

2n+ 1

∣∣∣∣∣ j=k+n∑
δ f (aj )

∣∣∣∣∣,

j=k−n j=k−n

(4)
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where f (aj ) is a generic (resonant, perihelion, or nodal) f
quency determined for the initial semi-major axisaj = 38.8+
0.01j , 0≤ j ≤ 101. Assumingn initial conditions close to eac
other in the phase space, the problem of near harmonics m
the frequencies determined at these points oscillate with al
identical period and phase, so that if no chaotic evolution w
present〈δ f 〉n determined over these initial conditions (Eq.
vanishes. In the presence of chaotic diffusion,〈δ f 〉n gives the
net chaotic change. We plot〈δ fσ 〉5, 〈δ f$〉5, and〈δ fÄ〉5 for vari-
ous eccentricities in Figs. 3d–3f. In the following text we re
to them simply asδ fσ , δ f$, andδ fÄ, avoiding the use of〈·〉5.

The color coding in Fig. 3 is similar to that in Fig. 2a: escap
and fast diffusing orbits with large changes of proper elem
and frequencies are shown in yellow, light red represents
orbits with moderate chaotic diffusion, and blue represents
most stable orbits with negligible chaotic evolution.

In general terms, we note in Figs. 3a–3c that the chaotic
lution of Aσ (note the distinct color coding used in Fig. 3a)
more important than the chaotic evolutions ofe andi (Duncan
et al. 1995, Morbidelli 1997). Fore= 0.2, the change ofAσ
varies between 0.5◦ per 45 Myr in the center and 1◦ per 45 Myr
in the immediate vicinity of unstable orbits on 108 years, while
δe andδi range between 0.0003◦ and 0.003◦ and 0.1◦ and 0.5◦

per 45 Myr, respectively.
For the sake of a quantitative estimate of the diffusion ef

over 4.5× 109 years we may assume a random walk of orbita
ements with a mean square displacement roughly proportion
time. Hence,δAσ , δe, andδi over 4.5× 109 years are expected
be some 10 times larger than the estimates over 4.5× 107 years
given in Figs. 3a–3c. This means that, fore= 0.2 and the tra-
jectories within an interval of about 0.1 AU close to the stron
unstable region at largeAσ , the expected changes ofδAσ , δe,
andδi over 4.5× 109 years are roughly 10◦, 0.03◦, and 5◦, re-
spectively. While the changes ine andi are small to expect th
trajectory to be destabilized in this way, the 10◦ change inAσ
is sufficient to insert many orbits initially at 115◦< Aσ < 125◦

(for e= 0.2) into the strongly unstable region within the a
of the Solar System. In Section 4, we give our definition of
marginally unstable region with respect to the number of bo
dynamically leaking from the resonance at 4× 109 years after
the initial instant.

For e> 0.2, δAσ is generally larger or on the order of 1◦ per
45 Myr. The 4:1 and 5:1 three-body resonances are stronge
e> 0.2 and makeAσ change as much as a few degrees in 45 M
at their locations. The 4:1 three-body resonance is located
to the unstable (yellow) region for 0.15< e< 0.3. This reso-
nance enhances the chaotic diffusion making the marginally
stable region somewhat larger than it would be otherwise.
5:1 three-body resonance is located at small amplitudes an
chaotic evolution ofAσ for 0.15< e< 0.3 at this resonance
confined by more regular behavior at both slightly larger
smallerAσ than the resonant one (∼60◦ for e= 0.2). This more
“regular” motion is not truly regular in the sense of a de

presence of KAM tori and an exponentially slow diffusion, but
rather corresponds to trajectories with moderate chaotic changes
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FIG. 3. Diffusion speed estimates in the 2:3 Neptune MMR. Variations of resonant amplitude (a), eccentricity (b), and inclination (c)—δi is given in radians—

between two consecutive intervals of 45 Myr are shown (in logarithmic scale—note the distinct color coding of (a)). Smoothed relative changes of resonant (d),
perihelion (e), and node frequencies (f) were computed for the same time interval. See text for the definition of these quantities.
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FIG. 9. Chaotic changes of the resonant amplitude (a), eccentricity (b), and inclination (c) on 45 Myr atAσ ∼ 60◦. Smoothed relative changes of the resona

(d), perihelion (e), and node frequencies (f ) were computed on the same time interval. Note the enhanced values ofδ f ate= 0.12–0.14 due to the presence of the
g− s+ g8 − s8 secular resonance (dotted–dashed line in panel (e)).
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FIG. 4. (a) The number of particles surviving att = 1, 2, 3, and 4 Byrvs Aσ
for initial e= 0.2. (b) Stars and crosses denote the numbers of escapes fot <
3.5 Byr and t < 4.5 Byr, respectively. Triangles denote their difference, i.
escapes in 3.5< t < 4.5 Byr. The marginally unstable region is at 100◦
Aσ < 123◦.

of orbital elements. Nevertheless, these trajectories form an
fective barrier for the chaotic evolution ofAσ . Consequently, it
is practically impossible that an orbit starting at the 5:1 thr
body resonance and 0.15< e< 0.3 escapes from the 2:3 Neptun
MMR within 4× 109 years.

Several other conclusions can be inferred from Figs. 3a–

(1) The most regular space of the 2:3 Neptune MMR at l
inclinations is at 0.1< e< 0.2 and small to moderateAσ , where
δAσ <∼ 0.5◦ per 45 Myr. There is an area in the middle of th
above interval (e= 0.15) whereδi = 0.8◦ per 45 Myr. We show
later that this happens due to the presence of a secular reso
involving the argument of perihelion (Fig. 9e).

(2) δeandδi are enhanced at the Kozai resonance (0.22< e<
0.27). Typically, 0.0006<δe< 0.006 per 45 Myr and 0.1<
δi < 0.6◦ per 45 Myr. While the eccentricity evolution is con
fined within the interval 0.22< e< 0.27 and no macroscopi
changes ofe are to be expected (if the inclination stays low
the inclination can chaotically evolve by several degrees in×
109 years along the separatrices of the Kozai resona
(Section 5). This evolution, however, never leads to escapes
viding the initial inclination is small (i <∼ 10◦).

(3) The test particles starting near the separatrices of the
MMR and withe< 0.1 usually spend a time period exceedi
108 years withσ alternating between libration and circulatio
At these eccentricities, orbits are well separated from Nept

and the chaotic region at the borders of the 2:3 MMR is confin
from both sides ina, which does not permit a definitive escap
NS–NEPTUNIAN REGION I 291
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from the resonance through an increase ofAσ . On the other hand
the chaotic evolution ofe (andi ) is fast near separatrices, whe
δe> 0.05 (δi > 5◦) per 45 Myr; so that in several 108 years, the
test particles are transferred toe∼ 0.2, where they encounte
Neptune and leave the resonance.

(4) On both sides of the 2:3 MMR (a = 39.05 and 39.8 AU),
there are places of stable motion ate< 0.1. Note thatδAσ and
δ fσ are fake here because the motion is non resonant, but o
indicators are correct. Both places are unpopulated.

The relative changes in frequencies (Figs. 3d and 3e) are c
plementary to action changes.δ fσ , δ f$, andδ fÄ should be re-
garded as more precise measures of chaotic diffusion thanδAσ ,
δe, andδi , because of the nature of frequency analysis. On
other hand, frequency changes are harder to interpret bec
they do not measure the diffusion rate in the “direction” of
bital elements, so that modifications of orbits are represe
indirectly by them.
δ fσ measures the local chaotic evolution in the plane trans

sal to the lines offσ = const. The lines of the 4:1 and 5:1 thre
body resonances correspond tofσ = 5.91× 10−5 year−1 and
fσ = 4.73× 10−5 year−1, so that roughlyδ fσ = 0.22 is needed
to transit between them. This is apparently beyond the poss
ities of chaotic orbital evolution becauseδ fσ = 10−4–10−3 per
45 Myr, i.e.,δ fσ = 10−3–10−2 per 4.5 Byr, in the region betwee
these three-body resonances (Fig. 3d). Hence, this verifie
stability of the central region of the 2:3 Neptune MMR.

4. THE MARGINALLY UNSTABLE REGION

The chaotic diffusion in the 2:3 Neptune MMR is dominat
by the evolution inAσ . This simplifies the situation and allows u
to model chaotic diffusion as a one–dimensional random w

We started 1000 test particles at the same initial valueA0
σ .

For each particle, a random walk was simulated accordin
the size ofδAσ (Fig. 3a). In short, for a given instantaneo
An
σ obtained at the stepn of the algorithm, we determined th

value ofδAσ (An
σ ) (interpolating from the archive ofδAσ vs Aσ

previously computed for all 101 test particles at given va
of e—Section 3.2) and then randomly added or subtracted
quantity from An

σ , so thatAn+1
σ = An

σ ± δAσ (An
σ ). The same

procedure was repeated in the next step withAn+1
σ .

We ran this simulation for 4.5× 109 years. The particles tha
hadAn

σ > 170◦ for somen were judged to escape from the re
onance and were deleted from the simulation. The final re
was the ratio of the number of the deactivated test particle
that of survived particles. We sampled the resonant amplitu
repeating the above procedure with initialA0

σ uniformly spaced
between 0 and 170◦. Hence, for givene, we ended up with the
number of escapes/survivals at timet (0< t < 4.5 Byr) as a func-
tion of A0

σ .
Figure 4a shows the number of surviving particles at 1, 2

and 4 Byr fore= 0.2. All particles withA0
σ < 95◦ survive while
ed
e
those withA0

σ > 125◦ escape. For intermediate amplitudes the
number of survivals smoothly decreases withA0

σ . The profile



t
o

w

e
c

c
g

c

l

o
i
i

n

t

ti
r

m

.
b

g

n-
ore

shed
table

R.

lso
lve
en-

nce.
at
er
t the

t

m-
yr)
dies

ter
292 NESVORNÝ

is less steep fort = 4 Byr than fort = 1 Byr corresponding to
the fact that test particles with initially smallerAσ escape on
longer time intervals. The profile att = 4 Byr should roughly
correspond to the current density of the 2:3 resonant objec
intermediate amplitudes. However, it is too early to draw c
clusions about whether this profile represents well the real
MMR population, because too few Plutinos are presently kno

Figure 4b shows the number of test particles escaping
t < 4.5 Byr (crosses) andt < 3.5 Byr (stars) fore= 0.2. It also
shows their difference, which is the number of particles escap
in 3.5< t < 4.5 Byr (triangles). This last quantity approximat
the current escape rate from the 2:3 MMR. The test parti
giving a contribution larger than 1% start at 101◦< Aσ < 124◦.

We define a place in the phase space to bemarginally unstable
if the escape rate to Neptune crossing orbits att = 4 Byr is more
than 1% of the initial population per 1 Byr.2 The places for which
the escape rate att = 4 Byr is less than 1% are: (i) strongly un
stable, where most of the original population escapes att < 4 Byr
so att = 4 Byr there are too few surviving bodies, and (ii) pra
tically stable, where the mean lifetime of bodies is much lon
than the age of the Solar System and the escape rate att = 4 Byr
is also negligible. For practical reasons, we assume the es
rate att = 4 Byr to be equal to the relative number of escap
between 3.5 and 4.5 Byr and identify the marginally unstable
gion as the interval ofAσ in which more than 1% of the origina
population leaks from the resonance in 3.5< t < 4.5 Byr.

Figure 5 shows how the width of the marginally unstab
region depends one. For 0.05< e< 0.35, we show the
number of escapes at 3.5< t < 4.5 Byr (triangles) and trace
the left and right borders of the marginally unstable regi
where the number of escapes was larger than 10 (from in
1000 test particles—i.e., larger than 1%), by spline smooth
(dotted lines).

The size of the marginally unstable region does not cha
much for 0.1< e< 0.27 and accounts for 20◦–30◦ centered at
Aσ ∼ 110◦. This roughly corresponds to the area affected by
4:1 three-body resonance (Figs. 2 and 3). Duncanet al. (1995)
found that the resonant bodies are unstable on billion year
scales if initially 70◦< Aσ < 130◦. From Fig. 5, we would rathe
say that the lower limit of this range is 90◦–100◦ for a wide
range ine, and resonant KBOs with 70◦< Aσ < 90◦ are perfectly
stable.

For e= 0.3, the marginally unstable region extends fro
about 55◦ to 105◦ and occupies more than half of the resona
space. According to Fig. 3a, the diffusion inAσ is faster ate=
0.3 than at smallere, allowing for larger mobility of test particles

Fore= 0.35, the marginally unstable amplitudes are those
tween 0◦ and 40◦. Here however, the model of one–dimension
random walk inAσ might not be realistic because a small chan

in e (instead ofAσ ) can destabilize orbits. Note that the numbe
of late escapes at thise is large (∼20%) suggesting a large con

2 If P(t) is the percentage of test particles escaping from the initial populat
in the time interval [0, t ], then by the escape rate at timet we mean the derivative
of this function.
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FIG. 5. The position and width of the marginally unstable region in depe
dence one. We compute the marginally unstable region as the place where m
than 1% of the initial population escapes in 3.5< t < 4.5 Byr. This percentage
corresponds in our experiment to more than 10 escapes (from 1000)—da
horizontal lines. The dotted lines show the boundaries of the marginally uns
region.

tribution to the currently escaping objects from the 2:3 MM
However, primordial orbits ate= 0.35 would have been rare.

The one–dimensional random walk model is incomplete a
for e∼ 0.05. There the test particles must first chaotically evo
to largere before they can leave the resonance by close
counters with Neptune. This evolution can be slow and 108–109

years may pass before a particle definitely leaves the resona
For this reason, the limits of the marginally unstable region
e= 0.05 shown in Fig. 5 are only approximate. On the oth
hand, no Plutinos are observed at these eccentricities so tha
contribution of objects initially ate∼ 0.05 to the total presen
flux of the escaping bodies from the 2:3 MMR is small.

5. AN ESTIMATE OF THE RESONANT POPULATION

We proceed with the calculation of ratios between the nu
bers of primordial, current, and escaping (in the last 1 B
bodies. Let us suppose that the angles of 2:3 resonant bo
and their semi-major axes were initially uniform. We show la
that this assumption is not in contradiction to the scenario
which the 2:3 MMR objects were captured by resonance swe
ing (Malhotra 1995). Moreover, we suppose that the inclinatio
were not excessively large, so that the diffusion speed meas

at i = 5◦ is representative (observed Plutinos have on average
i = 9.3◦).
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The number of primordial objects with orbits within 1◦ around
given Aσ is proportional to the volume in the phase space oc
pied by such orbits:1V(Aσ ). In the averaged, planar, circula
model of the 2:3 MMR, with Neptune as the only perturbi
body, this volume can be easily determined. The above m
is integrable and the trajectories ina, σ are computed on mani
folds of the motion integralN = √a(−2/3+√1− e2). The
areaV(Aσ ) enclosed by a trajectory is computed as

V(Aσ ) =
∫ Tσ

0
(a(t)− ares)σ̇ dt, (5)

whereσ̇ is the time derivative ofσ and the integral is evaluate
over one period ofσ . The derivative ofV(Aσ ) with respect to
Aσ times 1◦ is the needed volume1V(Aσ ). This volume grows
with Aσ , which means that the orbits with initially largeAσ were
more common. For instance, the volume occupied by orbit
Aσ = 85◦ is a factor of 10 larger than the volume occupied
orbits at Aσ = 10◦. This implies that the primordial orbits a
Aσ ∼ 110◦, i.e., in the marginally unstable region, were by
factor of 10 more numerous than the primordial stable or
with small Aσ .

In Fig. 6a, the dashed line shows the initial distribution inAσ
resulting from a uniform initial distribution in orbital angles an
a. Comparing this distribution with the one that would have

FIG. 6. The number of test particles surviving att = 4 Byr (a), and the
number of escapes in 3.5< t < 4.5 Byr (b), as a function ofAσ . The dashed line
in (a) shows the density (per 1◦) of the original population of 1000 test particle
The bold line denoted+0◦ shows how the population is eroded att = 4 Byr
under the effect of slow chaotic diffusion driven by four outer planets (δAdiff

σ ).
The erosion is larger forδAkick

σ = 1◦, 2◦, and 3◦, the latter being denoted by+3◦.

Note in (b) how the active region, where objects escape in 3.5< t < 4.5 Byr,
enlarges with increasing contribution of the collision/scattering kicks.
NS–NEPTUNIAN REGION I 293
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sulted from the capture by resonance sweeping (Malhotra 1
her Fig. 4), we find no difference for 0◦< Aσ < 90◦, where the
captured population is exactly proportional to the volume. C
sequently, the non-uniformity of Malhotra’s captured populat
in this range ofAσ is not a result of some special process
volved in the resonant capture, but rather reflects the unif
distribution in a and orbital angles. The captured populati
is peaked at moderate amplitudes due to the dynamic in
bility at large Aσ . The position of this peak inAσ depends
on the eccentricities of the pre–capture objects and the ra
which the resonances sweep through the primordial KB. It
be expected that small pre–capturee and even a slow sweep
ing rate would result in a resonant distribution peaked at sm
Aσ , while largere and faster sweeping would lead to a po
capture population that covers the stable resonant space
uniformly (i.e., following the dashed line in Fig. 6a). In th
example given by Malhotra (1997), the resonant populatio
peaked at 90◦ and it is in fact very close to the uniform cove
age of the 2:3 Neptune MMR eroded at largeAσ over several
107 years, which was the time used in the capture simulat
For this reason, our assumption of initially uniform semi-ma
axes and angles approximately holds for the resonance swee
scenario.

We assume a primordial population ofNprim bodies uniformly
distributed ina, λ, ω, andÄ (not in Aσ ), initially located at
the samee in the stable and marginally unstable regions w
Aσ < A∗σ (A∗σ is the outer border of the marginally unstab
region—fore= 0.2, A∗σ = 127◦). Then, we compute for eac
Aσ ,

Nesc(Aσ , e) = Nprim× 1V(Aσ , e)

V(A∗σ (e))
× fesc(Aσ , e), (6)

where fesc(Aσ , e) is the percentage of objects with initiale es-
caping from initialAσ in the last 1 Byr (Fig. 5).Nesc(Aσ , e) is
the number of objects with initiale having the initial resonan
amplitude within 1◦ of Aσ and escaping in the last 1 Byr. The in
tegral of the above expression over the amplitudes 0< Aσ < A∗σ
givesNesc(e), which is the total number of escaping objects w
initial e in the last 1 Byr. Fore= 0.2, the total area enclose
by the trajectory withA∗σ is V(A∗σ (e)) = 116.6 AU× deg, and
Nesc(e)/Nprim = 0.0165, i.e., some 1.7% of the objects initial
present ate= 0.2 in the 2:3 MMR escape in the last 1 By
We have calculated the same ratio also fore= 0.1 ande= 0.3
(Table I).

IntegratingNesc(e)/Nprim over e allows us to determine the
total fraction of objects escaping per 1 Byr from the 2
Neptune MMR att = 4 Byr. From Table I, and assuming a
initially uniform distribution ofe in the interval 0.1< e< 0.3,
this fraction results in 1.2% bodies per 1 Byr. Moreover, us
the results of Section 4 (e.g., Fig. 4a) together with a rela
similar to that of Eq. (6), it is also possible to determine the fr
tion Nsurv(e)/Nprim of objects that survive att = 4 Byr (Table I).

Integrating this fraction overe we obtain that 70% of objects
survive in the 2:3 MMR att = 4 Byr. Below, we calibrate these
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TABLE I
The Statistics of Surviving and Escaping Populations

in the 2:3 Neptune MMR

e A∗σ (deg) V(A∗σ ) (AU× deg) Nesc/Nprim Nsurv/Nprim Nesc/Nsurv

0.1 135 107.4 0.00937 0.827 0.0113
(92.1%) (52.3%) (94%) (51.3%)

0.2 127 116.6 0.0165 0.810 0.0203
(100%) (100%) (100%) (100%)

0.3 112 89.3 0.0121 0.563 0.0215
(76.6%) (56.0%) (53.3%) (81.1%)

Note.The individual columns are eccentricity (e), amplitude limiting the sta-
ble and marginally unstable regions (A∗σ ), area enclosed by the curve with am
plitudeA∗σ (V(A∗σ )), and ratiosNesc/Nprim, Nsurv/Nprim, andNesc/Nsurv, where
Nsurv is the number of bodies surviving att = 4 Byr (determined from Eq. (6),
with fsurv(Aσ ) for e= 0.2 shown in Fig. 4a). The percentages in brackets
the relative contributions ofe= 0.1 ande= 0.3 with respect toe= 0.2.

numbers by the number of bodies needed to keep the obse
population of the Jupiter–family comets (JFC) in steady sta

According to Levison and Duncan (1997), the total num
of visible (q = a(1− e)< 2.5 AU) active and extinct JFCs with
HT< 9 (HT is the total magnitude of an active comet3) is about
500. The main uncertainty in this estimate comes from the
cessity to compute the ratio between the numbers of ext
and active JFCs: Levison and Duncan (1997) adopted a p
ical lifetime of an active comet to be 12,000 years, and de
mined the above ratio to be 3.5. Moreover, Levisonet al.(2000)
estimated the ratio between the JFCs and the ecliptic com
(ECs) (i.e., comets having their Tisserand parameters la
than 2 unless they are on stable orbits in the trans-Neptu
region). Then, they computed the current number of the EC
be NEC = 1.3× 107 and also determined their mean dynam
lifetime: tEC = 1.9× 108 yr.

The EC may be resupplied from the classical KB (35<a<
50 AU, moderatee) or may be a remnant of the massive Scatte
Disk (SD; Duncan and Levison 1997). Denote byf2:3/all the ratio
of the number of comets escaping from the 2:3 MMR to
total contribution of the classical KB and SD. If, for instanc
most comets come from the classical KB (including the
Neptune MMR) and the contribution of the SD is negligible, th
it would be reasonable to assume thatf2:3/all ∼ 0.1–0.2. Indeed,
the current population of the 2:3 Neptune MMR is estimated
be between 10 and 20% of the classical KB population (Je
et al.1998).

The current number of objects in the 2:3 Neptune MM
(Nsurv) corresponding toHT< 9 can be computed from
Nsurvr2:3 = f2:3/all
NEC

tEC
, (7)

3 It is unclear how to relate the absolute magnitude of an active come
the diameter of its nucleus. According to Levisonet al. (2000) and references
therein, the absolute magnitudesHT < 9 should roughly correspond to diameter
D> 1–3 km.
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wherer2:3 = Nesc/Nsurv is the relative fraction of the prese
resonant population that escapes from the 2:3 MMR per t
interval. From previously determinedNesc/Nprim and Nsurv/

Nprim, r2:3 = 1.7× 10−11 year−1. This number is smaller tha
r KB = 3–4× 10−11 year−1 determined by Duncanet al. (1995)
for the whole classical KB (including the 2:3 Neptune MMR
Substitutingr2:3, NEC, andtEC in Eq. (7),Nsurv= 4× 109 f2:3/all.
Assuming f2:3/all = 0.15 we conclude that there are curren
6× 108 objects withHT< 9 in the 2:3 Neptune MMR.

This number is about the same as the 4.5× 108 comets esti-
mated by Morbidelli (1997). There are several differences
tween this and Morbidelli’s work: (1) Morbidelli estimated th
the volume of the region where bodies are either on invariant
or having orbits with diffusion speed too slow to escape fr
the 2:3 MMR over the age of the Solar System is about 40%
the volume of the moderately slow diffusion region. In this wo
we estimate the volume of the stable region to be about 80
the volume of the marginally unstable region. (2) Morbidelli
sumed thatf2:3/all = 0.25, while f2:3/all = 0.15 in our estimate
(3) The initial conditions with smallAσ were almost absent i
Morbidelli’s work. This can be presumably due to the cho
of a = 39.5 AU in his experiment, which is not necessarily t
semi-major axis corresponding toAσ ∼ 0 because of the short
periodic variations induced by Jupiter. (4) WhileNesc/Nsurv=
0.11 in Morbidelli (1997), in this paperNesc/Nsurv= 0.017.
(5) Morbidelli’s calibration used estimates of Duncanet al.
(1995) who found that the needed flux to sustain the JFC is
comets/year, while this work usesNEC/tEC = 0.068 comets/yr
from Levisonet al. (2000). In view of the above difference
the agreement between ourNsurv= 6× 108 and Morbidelli’s
Nnow = 4.5× 108 is rather surprising.

6. A SIMPLE MODEL OF COLLISIONS/SCATTERING

Until now, we did not address other possible mechanism
which the 2:3 resonant objects could be destabilized: (i) c
sional fragmentation, (ii) collisional non–disruptive kicks, (i
mutual dynamical scattering at close encounters, or (iv) the
namical scattering by Pluto. Detailed analysis of the effec
these processes goes beyond the scope of this paper, b
have attempted to simulate them by a simple scheme, addi
δAdiff

σ (i.e., the change inAσ due to the dynamic chaotic diffu
sion, Eq. 2) an arbitrary quantityδAkick

σ assumed to come from
the random kicks generated by the above processes. Not k
ing the dependence ofδAkick

σ one, i , andAσ (and time), we have
assumedδAkick

σ to be constant.
Farinellaet al.(2000) estimated that the population of KBO

larger than about 100 km in diameter has not been significa
altered by collisions over the age of the Solar System. T
means that collisional fragmentation is not relevant for la
bodies. Conversely, this mechanism may be dominant for s
bodies since about 10 fragments, 1 to 10 km in size, are
srently produced per year in the KB at 40 AU (Farinellaet al.
2000). With ejection speeds of 10–100 m/s, these fragments have
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semi-major axes about 0.1–1 AU different from those of th
parent bodies.

Levison and Stern (1995) investigated the effect of collisio
and scattering kicks on Pluto and found that the gravitatio
scattering by 1–330 km objects is much more important th
physical collisions. From their Fig. 8 we can infer thatδAscat

σ

is on the order of 10◦ per 5× 107 years, but this assumes
dense primordial population of 2.7× 107 comets per AU2 near
40 AU, which is more than a factor of 100 larger than the c
rent population of the KBOs at 40 AU. IfδAscat

σ scales lin-
early with the number of objects, then this indicates that
currentδAscat

σ of Pluto should be on the order of 0.1◦ per 5×
107 years. Recall that smaller bodies must be scattered more
Pluto.

Nesvorný et al.(2000) calculated the random walk of Plutino
driven by the gravitational scattering by Pluto. While fori < 5◦,
δAPluto

σ is on the order of 1◦ per 45 Myr, fori > 10◦ δAPluto
σ =

2◦–6◦ per 45 Myr, depending on the eccentricity.
Figure 6 shows the results of random walks characterized

δAdiff
σ + δAkick

σ , where we choose different values ofδAkick
σ . The

scale on they-axis corresponds to 1000 test particles ate= 0.2,
initially distributed between 0 andA∗σ according to the area
occupied by the orbits with givenAσ (dashed line in Fig. 6a).
This scale gives the number of particles per 1◦. In Fig. 6a, we
show the number of surviving test particles att = 4 Byr and in
Fig. 6b we show the number of particles escaping in 3.5< t < 4.5
Byr. Bold lines (denoted by+0) are the results of purely dynami
random walk with no contribution of kicks. Thin lines show th
results forδAkick

σ = 1◦, 2◦, and 3◦ per 45 Myr, respectively (the
last one being denoted by+3). Table II summarizes the statistic
of surviving and escaping particles in each case.

The current density of objects in the 2:3 MMR should rough
correspond to one of the curves in Fig. 6a. The erosion at largeAσ
increases with the increasing role of random kicks. The den
peak shifts fromAσ = 105◦, when the evolution is dominated b
pure dynamic chaotic diffusion, toAσ = 85◦, whenδAkick

σ = 3◦.
Moreover, for δAkick

σ = 3◦ the density curve is much flatte
than that forδAkick

σ = 0◦. The values ofNsurv/Nprim in Table II
show that the primordial population of the 2:3 MMR is reduc
to 56% for δAkick

σ = 3◦ and only to 81% forδAkick
σ = 0. We

believe that with increasing knowledge of the orbital distrib
tion of Plutinos, one should be able to estimate the contribu

TABLE II

The Statistics of the Primordial, Surviving, and Escaping Popu-
lations at e= 0.2 for Different Contributions of Random Kicks Gen-
erated by Collisions, Mutual Scattering, and Scattering by Pluto

Nesc/Nprim Nsurv/Nprim Nesc/Nsurv

δAdiff
σ + δAkick

σ (%) (%) (%)

δAσ 1.65 81.1 2.03
δAσ + 1◦ 1.99 71.4 2.78
δAσ + 2◦ 2.45 63.3 3.87

δAσ + 3◦ 3.06 56.3 5.44
NS–NEPTUNIAN REGION I 295
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FIG. 7. The number of escapes per 1 Byr is shown as a function of time
δAkick

σ = 0◦, 1◦, 2◦, and 3◦. The original population accounted for 1000 test pa
ticles ate= 0.2, distributed between 0< Aσ < A∗σ following the dashed line in
Fig. 6a.

of collisions/scattering to the general random walk in the 2
Neptune MMR on the basis of the comparison with Fig. 6a.

Figure 6b shows how the marginally unstable region enlar
with the increasing role of collisions/scattering. ForδAkick

σ =
3◦, Nesc/Nsurv= 3.1%—almost double the 1.7% determine
from the dynamic chaotic diffusion alone. If the former perce
age were true, the present number of objects in the 2:3 M
with HT< 9 would be estimated to be about 3× 108 (assuming
f2:3/all = 0.15). Of course the above model is a very rough a
proximation of the real collisional dynamics in the 2:3 MM
because it does not account for the disruption of bodies
does not allow for the resulting changes in the size distribut
of objects.

In Fig. 7, we show the number of escapes per 1 Byr (scale
the primordial population of 1000 test particles atAσ < A∗σ =
127◦ for e= 0.2) from the 2:3 MMR as a function of time. As ex
pected, most escaping particles leave the resonance att < 1 Byr.
If the 2:3 MMR is the sole source of bodies crossing ou
planets’ orbits, then the cratering record on planetary satel
should have a time dependence similar to that of the curve
Fig. 7. A steeper cratering rate in the last 3 Byr would indica
a significant role of collisions and/or scattering in the sou
region.

7. THE RUN FOR LARGER INCLINATIONS

The estimate of the maximum LCE att = 108 years is plotted
in Fig. 8a as a function of initialeandi , and for the second set o
initial conditions (Section 2). The initiala was 39.41 AU, which

means that the test particles started withAσ = 60◦, i.e., withAσ
only slightly smaller than most observed 2:3 resonant objects.



´

n

s

lu

s

C

t
d

-
e
ic
i

o

-
8

-

r
s

e

-

v
ly
r

c
o

v-

yr.
o-
o
t

at
of
ch a

res-
-

is

-
ition
y
ap-
th
n-
w–

f the

ital
99),
d
nd
rep-
ents
rbits
ost
hort

oup
nets
ods
.
15

eir
296 NESVORNY

The libration centers (dashed line) and separatrices (full li
of the Kozai resonance were computed forAσ = 0 by a semi-
numerical method. The minimum distances of test particle
Neptune in 108 years are shown in Fig. 8b. The color coding
the same as in Fig. 2. The eccentricity and inclination of P
(⊕) and known Plutinos (large dots) are shown at the intersec
of their trajectories withσ = 180◦ andω = 90◦ (from Nesvorn´y
et al.2000).

The central, weakly chaotic region of the 2:3 MMR extend
high inclinations (Fig. 8a). While the convergence of ln1(t)/t
to an asymptotic non-zero value (∼10−6.5–10−7 year−1) is ev-
ident for all trajectories in the Kozai resonance, we have L
≤10−7 yr−1 ate= 0.1. The chaotic region at smalle, where LCE
∼10−5–10−5.5 yr−1, slightly enlarges with increasingi (from
e< 0.05 ati = 5◦ to e< 0.07 ati = 25◦). This chaos is almos
certainly due to the overlap of the 2:1, 3:1, and 4:1 secon
resonances, because theν18secular resonance is limited toi < 10◦

and has a large libration period. The region of escapes ate> 0.35
for i = 5◦ shifts to largere with increasingi . This is either due
to the changing positions and sizes of theν8 andν18 secular res
onances or because the orbits with large inclinations are b
separated from Uranus. The minimum distance of test part
to Neptune decreases from∼20 AU in the center of the Koza
resonance to∼15 AU just outside its left limit and further t
∼10 AU ate∼ 0.

Figure 9 shows the chaotic change of orbital elements
frequencies in 45 Myr. The computational procedure was exa
the same as that in Section 3.2 (Eqs. 2–4).

The dependence ofδAσ (Fig. 9a) on the initial orbital ele
ments has characteristics similar to those of the LCE (Fig.
δAσ is large fore< 0.05 (∼20◦–30◦ per 45 Myr) showing the
instability of the corresponding orbits. These orbits evolve
the separatrices of the 2:3 MMR in several 108 year. Such evo
lution is accompanied by a random walk ine (andi ), which gets
faster near separatrices, whereδe> 0.05 (δi > 5◦) per 45 Myr
(Figs. 3b and 3c).
δAσ is moderately larger in the Kozai resonance (2◦–4◦ per

45 Myr) than in the rest of the resonant space (∼1◦ per 45 Myr
ate= 0.1). This can also be an effect of the 5:1 three-body
onance located atAσ ∼ 60◦, where our initial conditions cros
the resonant space.

Thee andi evolutions (Figs. 9b and 9c) are moderately
hanced at the separatrices of the Kozai resonance (δe∼ δi ≥
10−2.5). The orbits starting with largeAω significantly evolve in
e andi on billion year time scales. Ati > 10◦, the right separa
trix of the Kozai resonance is separated only by 0.03–0.04e
from the high–e unstable region. As the expected chaotic e
lution of e on 4× 109 years is of this size, most of the initial
large–Aω orbits with i > 10◦ are unstable. These findings a
in agreement with the results of Levison and Stern (1995)
cerning the stability at Pluto–like inclinations. The two Plutin
residing just outside the right separatrix of the Kozai resona

◦
ate= 0.32–0.33 andi ≤ 5 occupy a space where the evolutio
in e is moderate.
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The stability of small–Aω orbits in the Kozai resonance is e
ident on the evolution of frequencies. Fori > 10◦, δ f$ ∼ 10−3

on 45 Myr (Fig. 9e), which means only a 1% change in 4.5 B
For i = 15◦ andAσ = 60◦, the stable motion in the Kozai res
nance extends at 0.22< e< 0.29, which roughly corresponds t
Aω < 50◦. For larger initialA$, f$ significantly evolves and a
the separatrices of the Kozai resonanceδ f$ is as large as 10%
over the age of the Solar System.

Although our initial conditions do not cover the region
i > 25◦, it is very likely that the stable motion in the center
the Kozai resonance extends to higher inclinations. In su
case, the result of Duncanet al. (1995) that the MMRs with
Neptune have a destabilizing effect fori ≥ 25◦ is only approx-
imate. Indeed, the initial conditions of high–i simulations of
Duncanet al.sampled orbits withe≤ 0.1, which according to
Fig. 9 are more easily destabilized by secular effects.

Note in Fig. 9e the slightly anomalous value ofδ f$ at the
dotted–dashed line. We have identified it to be the secular
onance with angleω +$N −ÄN. Figure 10 shows the evolu
tion of this resonant angle for the test particle started ata =
39.41 AU, e= 0.135, andi = 15◦. This secular resonance
usually denoted byg− s+ g8− s8, whereg = f$,s= fÄ, and
g8 = 0.6727′′/year ands8 = −0.6914′′/year are Neptune’s per
ihelion and nodal mean frequencies. We have plotted its pos
in Fig. 9e from f$(e, i ) and fÄ(e, i ) calculated by frequenc
analysis. Fori ≤ 15◦, this resonance does not provide an esc
ing route from the 2:3 MMR because it is confined from bo
sides ine by more regular motion. For larger inclinations, tra
sitions to separatrices of the Kozai resonance and to the loe
unstable region are possible. Theg− s+ g8− s8 secular res-
onance does not appear in the plot of the LCE because o
large period of its resonant angle.

8. THE DISTRIBUTION OF RESONANT OBJECTS

From 191 KBOs currently registered in the Asteroid Orb
Elements Database of Lowell Observatory (September 19
68 objects fall within a 4 AU semi-major axis interval aroun
39.45 AU. Twenty-two objects have well determined orbits a
46 objects have the eccentricity assumed. The latter group
resents orbits with small observational arcs and orbital elem
that are very imprecise. Indeed, we have verified that most o
of the first group are stable inside the 2:3 MMR and that m
orbits of the second group are unstable on unrealistically s
time intervals.

Next, we have integrated the 22 objects of the first gr
and Pluto (as massless test particles) with four giant pla
for 107 years using the symmetric multi-step integrator. Peri
shorter than 1200 years were suppressed by digital filtering

Table III shows the orbital characteristics of Pluto and
Plutinos that were found on stable orbits over 107 years inside
the 2:3 MMR. Figure 11 shows the maxima and minima of th

7

na, e, andi on 10 years (the plot of the LCE was adapted from
Figs. 2a and 8a to a grey scale). In Fig. 11a, we plot a pair of
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TABLE III
Pluto and KBOs Found in the 2:3 MMR

No. Designation Distance Aσ Aω amin amax emin emax imin imax

1 Pluto 16.7 84.8 22.8 39.297 39.622 0.214 0.270 14.40 17.40
2 1993 RO 11.5 123.0 — 39.195 39.711 0.188 0.210 1.96 6.01
3 1993 SB 20.1 65.2 — 39.311 39.618 0.308 0.324 1.48 4.98
4 1993 SC 14.5 76.7 — 39.315 39.597 0.172 0.196 3.77 8.01
5 1994 JR1 11.5 94.5 — 39.279 39.621 0.111 0.138 1.14 5.73
6 1994 TB 17.6 54.5 73.2 39.358 39.555 0.178 0.317 12.10 21.30
7 1995 HM5 16.1 72.4 — 39.317 39.606 0.206 0.268 2.86 9.84
8 1995 QY9 10.5 132.0 — 39.143 39.789 0.249 0.267 3.61 7.75
9 1995 QZ9 15.0 41.5 — 39.396 39.501 0.115 0.178 17.20 21.80

10 1995 RR20 10.4 130.0 — 39.180 39.731 0.171 0.197 2.49 7.68
11 1996 SZ4 15.0 91.5 — 39.274 39.654 0.206 0.262 3.00 9.83
12 1996 TP66 21.7 17.2 — 39.409 39.510 0.314 0.334 5.49 9.21
13 1996 TQ66 13.8 27.6 — 39.413 39.472 0.088 0.130 13.10 16.60
14 1997 QJ4 15.0 102.0 35.1 39.259 39.665 0.207 0.263 14.10 18.50
15 1998 HK151 17.6 47.3 79.2 39.366 39.551 0.218 0.259 0.87 8.72
16 1998 HQ151 19.6 43.6 — 39.370 39.551 0.270 0.314 10.70 14.60

Note.Minimum distances to Neptune are shown in column 3 (Distance). Angles are in degrees; distances and semi-major axes are in
astronomical units. Minimum and maximum filtered orbital elements were computed for 107 years.
FIG. 10. The evolution of the angleω −$N +ÄN of a test particle located in the secular resonanceg− s+ g8 − s8.
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FIG. 11. The orbital distribution of Plutinos. The arrows indicate the maxima and minima of the orbital elements in 107 years (Table III). Note the two groups
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in (b) characterized by small (∼5◦) and large (∼16◦) inclinations.

two–headed arrows per object, one at the minimum and on
the maximum values ofa. Each of these arrows connect t
minimum and maximum values of the object’se (Table III).
In Fig. 11b there is only one arrow per object connecting
two points with coordinates (emin, imax) and (emax, imin), respec-
tively. For Pluto and Plutinos in the Kozai resonance, where
evolutions ofe andi are correlated, the arrows in Fig. 11b a
proximately indicate the true variation ofe andi . For Plutinos
outside the Kozai resonance, these arrows delimit the exten
of a rectangle wheree andi evolve.

Figure 11a shows that Plutinos are well accommodated w
the central stable space of the 2:3 MMR. Only 1995 QY9
1995 RR20 have large resonant amplitudes (Aσ = 132◦ and
130◦, respectively), and if their orbital elements were well de
mined from observations, these objects should escape from
resonance within 108 years. Moreover, 1993 RO is on the bord
between the marginally unstable and strongly unstable reg
with Aσ = 123◦, e= 0.2, and smalli . The orbital elements o
these Plutinos derived from observations should be slightly
correct because, otherwise, the suggested escape rate fro
2:3 MMR would be unrealistically large (more than 5% of t
current population per 108 years).

There are two unpopulated stable regions, one at small ec

tricities (0.05≤ e< 0.1) and the other in the center (39.35<
a< 39.55 AU and 0.15< e< 0.3). Note that fore> 0.1 there
e at
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are no Plutinos withAσ smaller than the amplitude correspon
ing to the 5:1 three-body resonance.

The void region at smalle cannot be a consequence of t
observational selection effect, because many KBOs on o
with e< 0.1 have been found at larger heliocentric distan
(42<a< 45 AU) than the 2:3 MMR. Note that a similarly un
populated region exists at 37<a< 39 AU ande< 0.05 (one can
partially see it in Fig. 11a just outside the left separatrix of
2:3 MMR) and has been discussed by Duncanet al. (1995). It
was suggested by them that the clearing occurred there du
the early stages of the Solar System formation. The two m
scenarios of how this may happened are the planetary migra
sweeping resonances scenario of Malhotra (1995) and the
citation of e (and i ) by large planetesimals suggested by P
et al. (1999). It is possible that the void region at smalle of the
2:3 MMR has a similar origin.

The void central region at smallAσ < 60◦ is a real puzzle. It
is true that the resonant bodies with smallAσ are expected to
be less numerous than the ones with largeAσ as they occupy
a relatively small volume in the phase space, but, on the o
hand, the observed void at smallAσ in the 2:3 MMR is more
pronounced than what would be inferred from the above a
ment. If confirmed by future observations, this void may b

consequence of the scattering effect of Pluto (Nesvorn´y et al
2000).
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One can clearly distinguish two groups with different inclin
tions in Fig. 11b. There are 10 low-inclination objects (imax< 10◦

and average of 5◦) and 6 high–inclination objects (includin
Pluto—imin> 10◦ and average of 16◦). The latter group was
conjectured to be a remnant of the collision in which the Plu
Charon binary formed (Sternet al. 1999). Indeed, there is n
dynamic reason for the intermediate inclinations being und
populated.

Apart from Pluto, only one object—1997 QJ4—was fou
with stable libration in the Kozai resonance. It hasAω ∼ 35◦.
Two other potential potential objects in the Kozai resonanc
1994 TB and 1998 HK151—have largeAω and evolve within
5× 107 years to the separatrices of the Kozai resonance. 1
QJ4 is the only KBO discovered until now that shares
2:3 and Kozai resonances with Pluto. This makes this b
an interesting object for future spectroscopic observation
it might be one of few low–velocity ejecta of Pluto–Charon b
nary formation event that survived the scattering effect of Pl
until present times. Indeed, Nesvorn´y et al. (2000) showed tha
Pluto’s gravitational sweeping effect can efficiently remove
objects from Pluto’s surroundings.

9. CONCLUSIONS

The dynamics of the 2:3 mean motion resonance with Nept
have been studied in this paper. We have numerically comp
the maximum LCE, frequencies, and measures of chaotic d
sion on a grid ofa, e, i . This allowed us to determine the mo
important inner resonances. Apart from previously known r
onances, we have found the 4:1 and 5:1 three-body resona
(the commensurabilities between the resonant period and
period of the inequality 2:1 between Uranus and Neptune)
the secular resonanceg− s+ g8− s8. The 4:1 three-body res
onance is important because it is located on the margin of
stable region of the 2:3 MMR.

We have defined the marginally unstable region as the p
where the escape rate to Neptune–crossing orbits att = 4 Byr is
more than 1% of the initial population per 1 Byr. This definitio
was motivated by the need for identification of the area that i
active source of Jupiter–family comets in present times. We h
shown that the marginally unstable area has a typical widt
several tens of degrees inAσ and estimated the present relati
flux of escaping objects from the 2:3 MMR to be 1.7% of t
current resonant population per billion years. This value, c
brated by the number of active and extinct Jupiter–family com
and their lifetimes, led to the estimate of 6× 108 objects corre-
sponding toHT< 9 (D> 1–3 km) currently in the 2:3 MMR.
This number is only an upper limit if the contribution of th
Scattered Disk to the flux of ecliptic comets is important or
other processes than purely dynamic ones (driven by four o
planets) play an important role.

The orbital distribution of observed Plutinos falls within th

limits of orbital stability inAσ ande. Low–Aσ orbits for 0.15<
e< 0.3 and low–e orbits (e< 0.1) are stable but do not seem
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to be well sampled by known Plutinos. These voids may
either dynamically primordial or a consequence of collisions
dynamic scattering in the resonance. Two groups withi ∼ 5◦

andi ∼ 16◦ were identified. If the latter one is a product of t
Pluto–Charon binary formation event then 1997 QJ4 is a g
candidate for a member of Pluto’s family.

In a second paper (Nesvorn´y and Roig, 2000), we extend th
present analysis to the 1:2, 3:4 and fine mean motion resona
in the trans–Neptunian region.
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