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The stability of the 2:3 mean motion resonance with Neptune
is systematically explored and compared to the observed resonant
population. It is shown that orbits with small and moderate am-
plitudes of the resonant angle are stable over the age of the Solar
System. The observed resonant population is distributed within the
stability limits. There exists an interval of large resonant ampli-
tudes, where orbits are marginally unstable. Resonant objects start-
ing in this interval may leave the resonance by slow increase of
their resonant amplitudes on a time scale of several billion years.
These objects eventually attain Neptune—crossing trajectories and
contribute to the flux of Jupiter—family comets. The number of ob-
jects leaking from the 2:3 resonance per time interval is calibrated
by the number of objects needed to keep the Jupiter—family comets
population in steady state. This allows us to compute the upper limit
of the number of resonant objects with cometary size. The effects of
collisions and mutual gravitational scattering are discussed in this
context.  © 2000 Academic Press
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1. INTRODUCTION

inthe KB by integrating a large number of orbits in the 32—50 AL
semi-major axis interval over g 10° years. The orbits starting
at perihelion distanceg less than 35 AU were found unstable
unless they were associated with some mean motion resonat
(MMR) with Neptune. The orbits witly > 35 AU were found
stable unless they were related with perihelion or node secul
resonances (mainlyg, v17, andv,g located at 40< a <42 AU
according to Kneévi¢ et al. 1991).

There was no similar work published until now on the stability
of the asteroid belt over the age of the Solar System due to tl
relatively short orbital periods of asteroids and the necessity |
use a short time step in their simulations. If the effect of inne
planets (Venusto Mars) also has to be taken into account, the tir
step of asteroid simulation is a factor of 25 smaller than what |
used for the KB; i.e., the computational need fora 40°-year
simulation in the KB is roughly equal to the computational nee
of a 222 = 90 Myr simulation in the asteroid belt (the factor
4/7 accounts for seven planets used in the asteroid belt agai
four planets used in the KB).

Nevertheless, considerable progress has been made on
long—term stability of asteroidal orbits using a different ap:

Edgeworth (1949) and Kuiper (1951) suggested that the sopypach. Inthis approach, the cha_otic _evolution_ of asteroid orbit:
System extends beyond Neptune in the form of a belt of sm§|fments (and secular frequencies) is numerically computed

bodies. Later, when Feandez (1980) proposed that such a be
(hereafter we refer to the belt as the Kuiper Belt—KB) can be
reservoir of Jupiter—family comets, the interest in providing t
direct observational evidence of the belt increased. The disc
ery of 1992 QBL1 by Jewitt and Luu (1993) was soon succee

ipe time interval covered by simulation (usually not exceedin:
1798 years) and then the expected chaotic evolution of orbits on

rgnger time interval is estimated. Orbits are judged to be stab

he chaotic change of orbital elements (or frequencies) extra

dRlgted to 4x 10° years is small. There is no practical need fo

by other observations and now the number of known Kuiper B&fdYing the stability of minor bodies with the current configu

objects (KBOs) is nearly 200.

ration of planets on longer time spans as the planetary orbits a

The stability of the trans—Neptunian region has been num&fysical conditions have been substantially different during th

ically studied by Levison and Duncan (1993) and Holman a
Wisdom (1993). Their results were extended by Dunegal. .
(1995) who computed a detailed map of stable/unstable regidh

mplar System formation.

In particular, the simulated time interval is usually divided
Several sub-intervals and the motion is approximated by
quasi—periodic evolution (which would be an exact solution o
the integrable system) on each of them. This quasi—period

1present address: Observatoire dadaeQlAzur, BP. 4229, Bd. de la Obser- @PProximation can be either explicitly computed (Laskar 199¢

vatoire, 06304 Nice Cedex 4, France.
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or one can rely only on the evaluation of motion integrals.
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The integrals of motion are eithproperorbital elements or  Denoting the resonant angle of the 2:3 Neptune MMR by
proper frequencies depending on their physical meaning. The
change in the proper elements and frequencies between con- o =2in— 3\ + 1w, 1)
secutive sub-intervals is due to the chaoticity of motion and is
frequently referred to as thehaotic diffusionThe local rate of wherex andw are the mean and perihelion longitudes agrd
chaotic diffusion is then closely related to the orbital stabilitis the mean longitude of Neptune, the resonant motion is che
and simple models have been devised in specific cases (Mursayerized by oscillation of around 186. This oscillation is
and Holman 1997). alternatively called thébration as opposed to the non-resonan
We use in the following the approach of Laskar (1994) argltuation wheres circulates. In the case of Pluto the amplitude
Morbidelli (1996) who define the motion integrals as either thef o libration (A,) is about 82. Additionally, Pluto is known
extrema or average of orbital elements computed on the stibreside in the Kozai secular resonance, where the argument
intervals. This method allows for the detection of slow chaotigerinelionw librates about 90with an amplitude A,) of 22°.
evolution of orbits and additionally has a clear astronomical in- The stability boundaries in the 2:3 Neptune MMR as a func
terpretation. The relative change in frequencies (Laskar 198@n of the resonant amplitude%, and A, were computed by
1999) is also a widely used indicator of the rate of chaotic diffu-evison and Stern (1995). They found that for inclinations simi
sion. The computation of frequencies usually permits the idefar to Pluto’s inclination £ 17°) the orbits starting wit, < 50°
tification of resonances responsible for chaos. were stable and the orbits with, > 120° were unstable over
Another useful tool for the determination of the orbitali x 10° years. For intermediaté,,, usually a smallA, was
stability/instability is the maximum Lyapunov Characteristiieeded for orbital stability. Similarly, Duncamal.(1995) have
Exponent (LCE) which measures the rate of divergence of neaghown that the motion at = 0.2 is stable over the age of the
trajectories. It is defined as lim., In A(t)/t, whereA(t) isthe Solar System provided tha, < 70°. The stability of the 2:3
norm of the variational vector at timgOseledec 1968, BenettinMMR was further investigated by Morbidelli (1997) with an
etal.1976). Although the relationship of the LCE to the chaotigdditional concern in the number of escaping objects and the
diffusion and the orbital stability is a complicated problemelation to Jupiter—family comets. This later work confirmed the
(Morbidelli and Froescld"1995), evaluation of the LCE fre-finding of Duncaret al.(1995) that the chaotic evolution on the
quently helps in identifying the most evident irregular and posnargin of stable region mostly affects, .
sibly unstable orbits. It is also clear that orbits with a very small We investigate the 2:3 resonant dynamics aiming our stuc
LCE are likely to be stable over long time intervals. at a detailed and global understanding of chaotic and regul
This paper deals with the 2:3 MMR with Neptune. This resnotions inside this resonance. Our approach closely follow
onance is of special interest as from 191 KBOs currently regigre work of Nesvorpand Ferraz-Mello (1997b). In Section 2,
tered in the Asteroid Orbital Elements Database of the Lowelle describe the setup of numerical experiments. The dyna
Observatory (September 1999—ftp://ftp.lowell.edu/pub/elgiifs of the 2:3 Neptune MMR at low inclinations is discussed il
astorb.html), 68 objects fall within a small semi-major axis inSection 3. We identify several interior resonances responsik
terval around 39.45 AU, where this resonance is centered. Tfig chaos and estimate the time scales on which they desta
resembles the situation in the outer asteroid beRq3 a < lize orbits. Based on this analysis we determine the extent
4.5 AU), where from 258 numbered asteroids some 120 othe region from which bodies are currently leaking to Neptune
jects known as the Hilda group are situated in the 3:2 MMBrossing orbits (Section 4). Then we scale the escape rate
with Jupiter. In both cases the resonant space is populated mggethe correct number of Jupiter—family comets and constra
densely than the neighboring non-resonant space; this is usugily current resonant population (Section 5). The effect of coll
believed to be a consequence of the Solar System early evolutéigns and dynamic scattering within the resonance is studied
(Malhotra 1995, Liou and Malhotra 1997, Hahn and Malhotra simple model in Section 6. In Section 7, we extend the prese
1999). study by exploring the orbital dynamics at large inclinations. Fi
The long-term stability of Pluto’s 2:3 resonant orbit has beatally, we discuss the orbits of observed KBOs in the 2:3 Neptur
confirmed in numeric simulations of Kinoshita and Nakai (1984)IMR (Pluto and Plutinos) in Section 8.
and Sussman and Wisdom (1988). It turned out that despite & his paper is the first part of the work that collects our result
positive LCE ¢-10~" year) Pluto’s orbit is stable over the ageon the mean motion resonances in the Kuiper Belt. The seco
of the Solar System. paper (Nesvoyiand Roig 2000) is devoted to the 1:2 and 3:
Concerning the global stability of the 2:3 Neptune MMR, th@leptune MMRs and the global structure of MMRs in the 35- tc
works based on averaged circular (Morbidellial. 1995) and 50-AU semi-major axis interval.
non-averaged circular (Malhotra 1996) models indicated that
the central resonant space is stable, but both were missing an 2 THE SET-UP OF NUMERICAL EXPERIMENTS
important ingredient—complete perturbations of the outer gi-
ant planets other than Neptune—in order to provide sufficiently The resonant value of the semi-major axigig = 39.45 AU.
reliable stability boundaries. The resonant dynamics are characterized by coupled oscillatic
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resanani ampluda (deg)in 23 over, also the range @ corresponding to motions stable over
4 x 10° years covers a somewhat smaller interval than that ind
cated in Fig. 1. There exists an interval of marginal instability a
about 100-120 (we define the marginally unstable region anc
specify its range more precisely in Section 4), where the chaot
evolution, although slow, is sufficient to enlarge beyond
4 120 (i.e., to the strongly unstable amplitudes) in less than 4
10° years.
- Following the approach used in studies of the first—order jc
vian resonances in the main asteroid belt (Ferraz-Mello 199
Nesvory and Ferraz-Mello 1997b), we calculate the maximun
LCE and estimate the rate of chaotic diffusion for orbits on
regular grid of initial actions, e, i.

We have run simulations for two sets of initial actions:

gahl

aoceniricity

unslable |
o ]

] ] 1
i Sid 183 385 184 i1 Y Jie 10T iEE E1E]

samirnajor i {AL) (1) 1010 test particles with 3B<a < 398 AU (Aa=
0.01 AU), e = 0.01, 0.05, 0.1, 0.15,.9, 0.23, 025, 027, 03,
FIG.1. The resonantamplitudd, (in degrees) of the 2:3 Neptune MMR. 0.35 (101 test particles at eaejy andi = 5°;

The gray area roughly corresponds to the strongly unstable motignatl 20° (2) 405 test particles with = 3941 AU O< e < 0.4 (Ae —
(Morbidelli 1997). 0.005), and 3<i <25 (Ai =5°, 81 test particles at each
value ofi).

of the semi-major axis aboutes and ofo (Eq. 1) about 180
with a typical period of 20,000 years. We also recall that othén the first set we explore the resonant orbits with srinatid in
important characteristics of the 2:3 MMR is the presence of titfee second set we study the dynamics at large
Kozai resonance (a = 0.25 for small A,—Morbidelli et al. The initial angles of test particles were chosen so that
1995). This secular resonance concerns libration @round 180, w = 90°, and2 — Qp = 0, whereQ2 andQ2p are the node
90 or 270 and forces coupled variations of teendi with a longitudes of a test particle and Pluto, respectively. In this wa)
typical period of several million years. the plane of initial conditions intersects the libration centers c
According to numerical simulations (Duncaat al. 1995, both the 2:3 and Kozai resonances.
Morbidelli 1997) the orbits in the 2:3 MMR with the libration Inboth runs the test particles were numerically integrated wit
amplitudeA, larger than about 12Qare unstable in relatively four outer planets (Jupiter to Neptune) foP3@ars by the sym-
short time intervals. In Fig. 1 we show the dependenci&,06n metric multi-step integrator (Quinlan and Tremaine 1990). Th
a ande. The amplitudes have been computed numerically fonitial conditions of the planets were chosen at their position
smalli and initialoc = 180" in a model with four outer planets. at JD 2449700.5 with respect to the ecliptic plane and equinc
The maximum excursion ef from 180 in 10° years was taken at epoch J2000. The time steps of 40 days for the planets a
asA,. 200 days for the test particles were used. In the course of int
The grey region in Fig. 1 schematically delimits strongly urgration, a run—time digital filter (Quinet al. 1991) was applied
stable orbits forA, > 120°. As we show later, the actual size ofto aexpio, eexpiw, andi expiQ (1 = +/—1), and the initial
the stable resonant region is somewhat smaller than the cergeahpling of 5 years was augmented to 2500 years without intr
white areain Fig. 1 due to the presence of secular resonancesa@ineng fake frequencies in the Fourier spectrum (the problem
the possibility of close approaches to Uranus at la&gdore- frequency aliasing is described in Pressl. 1992).

FIG.2. The estimate of the maximum LCE (a) and the minimum distance to Neptune (b) in&lyediOnumerical simulation of orbits in the 2:3 Neptune
MMR. The initial inclinations were & See text for the description of other initial elements of the test particles. The separatrices (bold border lines), libr
centers (bold vertical line at 39.45 AU), and the main inner resonances (Koza amd denoted by full thin lines);g, 4:1, and 5:1 three-body resonances are
dashed; the secondary 5:1 resonan&-<af.05 is denoted by sig5) were computed by a semi—numerical method. The test particles escaping from the 2:3 resc
before the end of the integration (in yellow) have simultaneously large LCE estimates and small minimum distances from Neptune. The mostteguitér orh
LCE <10-%5year!, are located in the interval of about 0.3 AU centered at the libration centers and have eccentricities between 0.05 and 0.3 (blue/dar
(a)). There are no regular orbits abave- 0.35 due to the overlap af andvig. The best angular protection against approaches to Neptune happens at the librz
centers for @ < e < 0.35 where the minimum distance is larger than 15 AU. The orbital elements of known Plutinos (large dots) ang)Rlkece(taken from
Nesvory et al. (2000).

FIG.8. (a) The estimate of the maximum LCE in the 2:3 Neptune MMR. (b) The minimum distance to Neptune. Tha im&&thosen at 39.41 AU, which
corresponds té\, ~ 60°. See text for the definition of other initial elements. The separatrices (full lines) and libration centers (dashed line) of the Kozai resc
were computed foA, = 0. The orbital elements of known Plutinos (large dots) and Plgjcafe shown.
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The actual procedure consisted of a consecutive applicatiminthe perihelion longitude (full line & < 0.05 marked sig5).
of time—domain FIR filters (Pres al. 1992). First, one filter Other secondary resonances, where the ratios of the reson
(filter A) was used two times increasing the sampling by a faend perihelion frequencies are smaller, are located at very sm
tor of 100 and then a second filter (filter B) was additionallg. The location of all these inner resonances in the 2:3 MMI
applied, increasing the sampling by a factor of 5. See Negvorand their effects on long-term dynamics of resonant bodies h.
and Ferraz-Mello (1997a) for the specifications of both filterbeen known since Morbidelli (1997).

With this procedure, all periods smaller than 5000 years wereApart from the above inner resonances, we have calculated
suppressed and all periods larger thaf yi€ars were retained. commensurabilities between the resonant frequency and the f
In addition to the equations of motion, the variational equatiomgiency of Uranus—Neptune quasi—resonance, i.e., the frequel
also were numerically integrated using the symmetric multi-ste the anglevy — 2y that circulates with a negative derivative
method. The variational vector was periodically renormalized and the period of 4230 years. This type of resonance involvir
order to avoid the computer overflow (Benettral. 1976). This two perturbing bodies and a minor body was recently show
allowed us to estimate the maximum LCE for all test particlesmportant in clearing the 2:1 MMR with Jupiter and opening
the Hecuba gap & = 3.27 AU in the asteroid belt (Ferraz-

3. THE LOW-INCLINATION RUN Mello et al. 1998). We plot the commensurabilities 4:1 and 5:1
. between the resonant frequency and230 year? in Fig. 2a
3.1. The Maximum LCE (dashed lines marked 4:1 and 5:1).

The estimate of the maximum LCE for each test particle wasAt these “three—body” resonances, the LCE is moderatel
computed as IA(t)/t with t = 10° years, and was plotted aslarger than in the background. While the 4:1 resonance has t
a function ofa and initiale in Fig. 2a for the first set of initial LCE about 105 year, more than a factor of 10 larger than
conditions. We have compensated in this figure for short—periwdthe background, the 5:1 resonance is weaker, with the LC
variations by a shift of 0.145 AU ia so that the test particlesrising from the background by a factor of %0 Although the
with smallestA, are near the true libration center at 39.45 AUcontrast of paper—printed version of Fig. 2a is not as good «
This shift mainly accounts for the difference between the iron the computer screen, one can note that the anomalous L
stantaneous initigh and its average over the orbital period of/alue follows the lines of the 4:1 and 5:1 resonances provin
Jupiter. This difference is about the same for all test particlé®m to be important for orbital dynamics on long time scales
(except at very smak where the location of the true libration The inner resonance locations in the 2:3 Neptune MMR wel
center strongly depends @). Such correction was not intro- computed by the semi—numerical method of Henrard (1990) in
duced fore (andi) which was less affected by the short—perioframe of the averaged, spatiakf iy = 0) and circularéy = 0)
variations and which had initial values within 0.01 (arig @ models. As the full exposition of this method goes beyond th
their averages over 1@ears. In Fig. 2b, the minimum distancesscope of this paper, we refer the reader to Moenal. (1998),
of test particles to Neptune in 49ears are shown. where the description of its application to MMRs can be founc

The color coding in Fig. 2a was chosen so thatow corre- The extent of regular and weakly chaotic trajectories is clearl
sponds to the initial conditions of test particles that escapeddelimited in Fig. 2a and corresponds to the orbital element
Neptune—crossing orbits in the integration time spad;cor- plotted in blue and dark red. The corresponding resonant orbi
responds to the initial conditions for which the estimate of ttetay phase—protected from close encounters with Neptune in't
LCE on 16 years clearly converges to its limit value and the cowhole integrated time interval (Fig. 2b). The central resonar
responding orbits have non-zero LCBé$uecorresponds to the area is enclosed by theg andvig secular resonances which
initial conditions of the most regular orbits. For these, there waserlap and generate strong chaos at, otherwise stable, la
no (evident) convergence to a non-zero value and lag(tp/t)  A,. The upper eccentricity limit of the blue/dark red region a
linearly decreased with lag even if in many cases there ap-about 0.35 coincides with the lower limit of chaos generated b
peared characteristic cusps indicating local hyperbolic structutbis overlap, and moreover, fer> 0.35 the secular oscillations
in the phase space (Morbidelli and Neswr999). of e drive orbits to approach Uranus at distances less than 5 A

In Fig. 2, we plot the separatrices and libration centers of tif@, = 19.22 AU).

2:3 MMR and several secular resonances, which were foundThe orbits starting af, > 130" are usually fast driven (in at
inside the 2:3 MMRug (the 1:1 commensurability of the meanmost several 10years) to the borders of the 2:3 MMR. There,
perihelion frequencies of a minor body and Neptune—full linehile o alternates between libration and circulation, the tes
near separatrices marked nu8)g (the 1:1 commensurability particles’ eccentricities chaotically evolve toward the Neptune
of the mean nodal frequencies of a minor body and Neptunegrazing limit & ~ 0.2) or, if €'s are already initially large, the
dashed line marked nul8), and the Kozai resonance (the patticles suffer close encounters with Neptune and are extract
commensurability of the mean perihelion and node frequenciiesm the resonance. This is the typical fate of the test particle
of a minor body—full line intersecting the libration centeeat  their initial orbital elements are shown in yellow in Fig. 2.
0.25, marked Kozai). Also the secondary resonance is showrConversely, for orbits starting with, <100 and Q05< e <
where the frequency ofis a factor of 5 larger than the frequency0.25 (note that this limit is eccentricity dependent for larger
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A, <60 fore = 0.3,andreducesto zerofer= 0.35),the LCE escaping initial conditions witih, > 130° by a narrow interval
decreases with time nearly to10year-* showing in many cases of weakly chaotic motion (at 120< A, < 130°). This latter re-
no strong tendencies to converge. This however depends on egamh, however, does not act as a true barrier in the phase sp:
values of initiala ande. For Q1 <e < 0.2, the 5:1 three-body (Section 4). Although slightly retarding the evolution from the
resonance influences orbits witfjy ~ 60° and makes their LCE 4:1resonanceté, > 130, orbits can efficiently “leak” through
converge to about 167 year!. For most other initialA, and this region to largeR,. The 4:1 three-body resonance joins the
e<0.2,logInA(t)/t linearly decreases with Idgwith frequent escaping region a = 0.3. All orbits with A, > 110 are un-
“cusps” typical for the situation, where the trajectory passesable within 16 years, and already fo, = 70° the orbital
close to hyperbolic resonant points. Although we do notidentiBlements are visibly irregular suggesting the enlargement of t
the true nature of weak resonances responsible for this behavi@rginally unstable area at= 0.3.
(a detailed identification would be literally a watchmaker's work The minimum distance from Neptune (Fig. 2b) ranges be
in view of the number of frequencies present in the problentyyeen 7 and 25 AU for those test particles survivin§ y@ars in
it may be expected that the convergence ok(b)/t toward a the resonance. While fa&~ 0.05-0.1, the minimum distances
positive value happens in an extended simulation. Our guess as low as 10 AU, foe = 0.3 and smallA, the resonant—
is that the measure of trajectories in the 2:3 Neptune MMRotection mechanism assures a 20 AU separation from Neptul
with e < 0.2 having the LCE smaller than 1®year? is very This is a consequence of resonant bodies having conjunctic
small. with Neptune at aphelion of their orbits and the fact that mor
Concerning > 0.2 and small to moderat&,, one candiscern elongated orbits have larger aphelion distances (Negwamd”
areddish color at the corresponding initial conditions in Fig. 2&oig 2000). For exampl&.{1+ €) —ay = 17.3 AU for e =
This is a consequence of the fact that\t)/t converges to 0.2, which is in good agreement with the numeric result fo
its asymptotic value which is larger than f§year?®. Apart A, = 0in Fig. 2b.
from the 5:1 three-body resonance, it is the Kozai resonancdn both panels of Fig. 2 we show the semi-major axis and e
that causes the chaos there, because the initial conditions weaetricity of Pluto () and Plutinos (large dots) at the intersec-
chosen so that its center at°%hd the corresponding librationtion of their trajectories witkr = 180° andw = 90°. These data
space could be sampled. The Kozai resonance is narrow for smadre taken from Nesvoynét al. (2000) and reflect the knowl-
inclinations (Ae ~ 0.05fori = 5°) and as we have noticed intheedge of Plutinos’ orbital distribution in March 1999 (Minor
simulation the test particles with= 5° almost never remain for Planet Center Orbital Database, http://cfa-www.harvard.ed
a long time with stable librations. Theimw typically alternates cfa/ps/lists/TNOs.html). In brief, Nesvoyrgt al. (2000) per-
between circulation and libration on the time scale of severf@rmed a numeric simulation of 33 Plutinos (and Pluto) and de
million years. This behavior results in the positive LCE, of abotérmined their smoothed orbital elements at the moment whe
10-%¢year!, calculated in our simulation for the test particlesr = 180° andw = 90° simultaneously. Advancing the orbital
starting neae = 0.25. elements to this manifold is well suited for the present comr
The resonant space available for regular motion (we use tha&rison as the initial conditions in Fig. 2 also have= 180
word “regular” as a synonym for “weakly chaotic” rather thamnd w = 90°. There is one symbol per body in Fig. 2 corre-
to refer to true regularity in the sense of zero LCE) shrinks f@ponding to the first intersection with the manifold. Due to th
e> 0.25 and disappears fer= 0.35. As shown in Fig. 2a, the symmetry of the 2:3 MMR with respect to the libration cen-
most regular behavior happenseat 0.3, above the Kozai and ters, the next intersection of a trajectory with= 180° would
below the 5:1 resonances, and a very small be symmetrically placed on the opposite side of the libratio
On the boundary between the escaping (yellow) and regienters.
lar (blue) orbits, a number of initial conditions in an interval The distribution of Plutinos in thea( €)—plane samples the
of some 0.1 AU ina have an intermediate value of the LCEegion 3925< a < 39.7 AU and Q08 < e < 0.34 which corre-
(10%-10"5year?, light red in Fig. 2a). We have noticed thatsponds reasonably well with the extension of the central regul
these orbits chaotically evolve in 8Qears, which suggests thatregion of the 2:3 MMR. There are two regions in Fig. 2 tha
they might be destabilized in longer time intervals (for this, ibok relatively unpopulated. The first one is in the center of th
is sufficient to rise theid, above 120-130). The simulations 2:3 MMR at 3935<a < 39.6 AU and 015< e < 0.3. Here, ac-
of Morbidelli (1997) showed the existence of such process. Werding to Nesvom et al. (2000), the libration amplitudes of
refer to this interval as the “marginally unstable region.” Plutinos could have been excited by Pluto’s gravitational swee
At this point we would like to draw the reader’s attentioning effect.
to the inner structure of the marginally unstable region. The The second unpopulated region is located.@56: e < 0.08.
4:1 three-body resonance plays an important role heree Eor At these eccentricities, orbits are unaffected by the chaos unc
0.15, this resonance furnishes a “smooth” passage betweenttie 5:1 secondary resonance, where the 2:1, 3:1, and 4:1 s
weakly chaotic A, <110) and escapingA, > 130°) orbits. ondary resonances amgs are simultaneously present. In fact,
Fore = 0.2 the situation slightly changes as the 4:1 resonanne resonant objects are known wih< 0.08. We return to this
(now approximately at 105< A, < 120) is separated from the issue in Section 8.
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3.2. The Chaotic Evolution of Actions and Frequencies where f(a;) is a generic (resonant, perihelion, or nodal) fre-
uency determined for the initial semi-major agis= 38.8 +
1j,0 < j < 101. Assumingninitial conditions close to each
er in the phase space, the problem of near harmonics mal

To measure the chaotic evolution of orbital elements we ha
computed, for eachintegrated test particle, the maxima of filtere;

o, e, andi on two consecutive intervals of 45 Myr each (i.e., th . . X . .
.. ' . The frequencies determined at these points oscillate with almc

total length of 90 Myr). These quantities do not change with tim : : ; X .
identical period and phase, so that if no chaotic evolution wetr

in the case of quasi—periodic motion. We used a larger window

interval (45 Myr) than Morbidelli (1997; 10 Myr) expecting topre;ent(af)n determined over thesg |n[t|al 'condltlo'ns (Eq. 4)
. vanishes. In the presence of chaotic diffusigif,), gives the
improve the accuracy.

. . net chaotic change. We pl¢if, )s, (§f,)s5, and(sfq)s for vari-
The following quantities were computed, ous eccentricities in Figs. 3d—3f. In the following text we refel
) o to them simply asf,, 6f,, andéfq, avoiding the use of )s.
A, = |ama>< ~ Tmax The color coding in Fig. 3is similar to that in Fig. 2a: escaping
Se = |e§§;x — eﬁ;x| (2) and fast diffusing orbits with large changes of proper elemen
and frequencies are shown in yellow, light red represents t
) orbits with moderate chaotic diffusion, and blue represents tt
most stable orbits with negligible chaotic evolution.
where the indexes 1 and 2 refer to maxima obtained in the firstin general terms, we note in Figs. 3a—3c that the chaotic ev
and second intervals, respectively. In addition, we smoothed 1@on of A, (note the distinct color coding used in Fig. 3a) is
above quantities over initial conditions with the saef®/ a 5— more important than the chaotic evolutionsedindi (Duncan
point (0.048 AU) running window im. The resulting smoothed et al. 1995, Morbidelli 1997). Foe = 0.2, the change of,
values ofs A, (Fig. 3a),de (Fig. 3b), andsi (Fig. 3c) show how varies between.8° per 45 Myr in the center and per 45 Myr
much the orbital elements change, on average, due to the chajgtiie immediate vicinity of unstable orbits on®lgears, while

si =i, —i®

max max

evolution of trajectories on the time interval of 45 Myr. se andsi range between.0003 and 0003 and 01° and Q5°
To measure the chaotic evolution of frequencies we used figer 45 Myr, respectively.
quency analysis (Laskar 1999). The frequendigsf., and fo For the sake of a quantitative estimate of the diffusion effec

were determined from the Fourier spectraa@po, eexpiw  over45 x 10° years we may assume arandomwalk of orbital el
and i expi€2, respectively, on two consecutive intervals ogments with a mean square displacement roughly proportional
45 Myr using the algorithm of Frequency Modified Fouriefime. Hence A,, se, andsi over 45 x 10° years are expected to
Transform (FMFT; Sidlichovsk/ and Nesvorp1997). While  be some 10 times larger than the estimates oMex410 years
for ., and fq this meant the determination of the leading peajfiven in Figs. 3a—3c. This means that, &= 0.2 and the tra-
frequency in the spectra efexp.co andi exp:$2, respectively, jectories within an interval of about 0.1 AU close to the strongly
the technical procedure fof, was somewhat more involvedynstable region at largé,,, the expected changes &A,, e,
due to the large number of terms with similar amplitude in thendsi over 45 x 10° years are roughly $00.03°, and 5, re-
Fourier spectrum o expio. spectively. While the changes @andi are small to expect the
The resonant, perihelion, and node frequencies determinedrifjectory to be destabilized in this way, the® hange inA,
this way do not change with time in the case of quasi—periodigsufficient to insert many orbits initially at 115 A, < 125’
motion and change only due to chaotic evolution of orbits. Th{for e = 0.2) into the strongly unstable region within the age

is why we used of the Solar System. In Section 4, we give our definition of the
marginally unstable region with respect to the number of bodie
8ty = (f2 — t3) /1), dynamically leaking from the resonance ax4.0° years after

@ an /5 ) the initial instant. _
8fe = (fw - )/fw , and ©) Fore> 0.2,8 A, is generally larger or on the order of fier
5fg = (fS(ZZ) _ fs(zl))/ fs(zl) 45 Myr. The 4:1 and 5:1 three-body resonances are stronger |
e> 0.2 and make?, change as much as afew degrees in 45 My
at their locations. The 4:1 three-body resonance is located clo

We have additionally attempted to reduce the effect of peff. € unstable (yellow) region for.1b < e <0.3. This reso-

odic oscillations of frequencies known as the problem of nedf"ce enhances the chaotic d|ffu5|0q making the marg”.‘a”y u
harmonics (a consequence of a finite time window used I]‘able region somewhat larger than it would be otherwise. Tt

the Fourier transform—Nesvoyraind Ferraz-Mello 1997a). We 1 three-body resonance is located at small .amplltudes and I
chaotic evolution ofA, for 0.15< e < 0.3 at this resonance is

as measures of chaotic diffusion in frequencies.

compute ' . :
P confined by more regular behavior at both slightly larger an
1 dgkn j—kdn smallerA, than the resonant one-60° for e = 0.2). This more
(f@din1=5—— 1 > Isf@y)l- il > 8f@),  “regular’ motion is not truly regular in the sense of a dens:
j=k—n j=k—n

presence of KAM tori and an exponentially slow diffusion, but
(4) rather corresponds to trajectories with moderate chaotic chang
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resonant amplitude change (deg) resonant frequency change

39.4
a (AU) a (AU)

node frequency change

FIG. 3. Diffusion speed estimates in the 2:3 Neptune MMR. Variations of resonant amplitude (a), eccentricity (b), and inclinaéois(g)ven in radians—
between two consecutive intervals of 45 Myr are shown (in logarithmic scale—note the distinct color coding of (a)). Smoothed relative changeast¢éijeso
perihelion (e), and node frequencies (f) were computed for the same time interval. See text for the definition of these quantities.
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FIG.9. Chaotic changes of the resonant amplitude (a), eccentricity (b), and inclination (c) on 45 Mlyra60°. Smoothed relative changes of the resonant
(d), perihelion (e), and node frequencies (f) were computed on the same time interval. Note the enhanceddfahtes-60.12—0.14 due to the presence of the
g — S+ gg — sg secular resonance (dotted—dashed line in panel (e)).
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N2:3, e=0.2, i=5 deg from the resonance through an increasAofOn the other hand,
the chaotic evolution of (andi) is fast near separatrices, where
se> 0.05 (§i > 5°) per 45 Myr; so that in several §§ears, the
test particles are transferred ¢o~ 0.2, where they encounter
Neptune and leave the resonance.

(4) On both sides of the 2:3 MMRa(= 39.05 and 39.8 AU),
there are places of stable motioneat 0.1. Note thats A, and
3f, are fake here because the motion is non resonant, but otl
indicators are correct. Both places are unpopulated.

1000

500 —

number of survivals

The relative changes in frequencies (Figs. 3d and 3e) are co
plementary to action changeX,, §f.,, andsfg should be re-
garded as more precise measures of chaotic diffusionsthan
de, andsi, because of the nature of frequency analysis. On tt
other hand, frequency changes are harder to interpret beca
they do not measure the diffusion rate in the “direction” of or
bital elements, so that modifications of orbits are represent
indirectly by them.

: ' 8f, measures the local chaotic evolution in the plane transve
100 11|o 12|0 130 sal to the lines off, = const. The lines of the 4:1 and 5:1 three-
sigma amplitude (deg) body resonances correspond tp = 5.91 x 10 °year?! and

FIG.4. (a) Thenumber of particles survivingtat 1, 2, 3, and 4 Byvs A, fo = 4'.73 x 107> year, so -th?'t roughlyf, = 0.22is needed-
for initial e = 0.2. (b) Stars and crosses denote the numbers of escaptes for_t(? transit between Fhem' Thl_s IS apparently beyond the pOSSIb
3.5 Byr andt < 4.5 Byr, respectively. Triangles denote their difference, i.elties of chaotic orbital evolution becausé, = 10-*-1072 per
escapes in 3<t <45 Byr. The marginally unstable region is at 00 45 Myr,i.e.8f, = 1073102 per 4.5 Byr, inthe region between
A, <123, these three-body resonances (Fig. 3d). Hence, this verifies

stability of the central region of the 2:3 Neptune MMR.

1000

3.5 <t<4.5Byr 5 Jok ¥ (b)

%+

100

T
*++

number of escapes

+

of orbital elements. Nevertheless, these trajectories form an ef-
fective barrier for the chaotic evolution &f,. Consequently, it
is practically impossible that an orbit starting at the 5:1 three-

body resonance andib < e < 0.3 escapes from the 2:3 Neptuneoy the evolutioniMA, . This simplifies the situation and allows us

MMR within 4 x 10° years. AR . .
Several other conclusions can be inferred from Figs. 3a—32[:9 model chaotic diffusion asa one—dlmensmngl .rgndom wal
We started 1000 test particles at the same initial vaife
(1) The most regular space of the 2:3 Neptune MMR at lofwor each particle, a random walk was simulated according
inclinations is at (L < e < 0.2 and small to moderat&,, where the size ofs§ A, (Fig. 3a). In short, for a given instantaneous
8A, $0.5° per 45 Myr. There is an area in the middle of the\] obtained at the step of the algorithm, we determined the
above interval¢ = 0.15) whereSi = 0.8° per 45 Myr. We show value ofs A, (A?) (interpolating from the archive @A, vs A,
later that this happens due to the presence of a secular resongneeiously computed for all 101 test particles at given valu
involving the argument of perihelion (Fig. 9e). of e—Section 3.2) and then randomly added or subtracted tf
(2)seandsi are enhanced atthe KozairesonancZ@ e< quantity from A?, so thatA?™1 = A" £+ §A,(A?). The same
0.27). Typically, 00006< se < 0.006 per 45 Myr and @ < procedure was repeated in the next step wifh?.
8i < 0.6° per 45 Myr. While the eccentricity evolution is con- We ran this simulation for & x 10° years. The particles that
fined within the interval 2 < e <0.27 and no macroscopic had A} > 170 for somen were judged to escape from the res-
changes ot are to be expected (if the inclination stays low)pnance and were deleted from the simulation. The final rest
the inclination can chaotically evolve by several degreessn 4was the ratio of the number of the deactivated test particles
10° years along the separatrices of the Kozai resonantbet of survived particles. We sampled the resonant amplitud
(Section 5). This evolution, however, never leads to escapes prepeating the above procedure with inithg) uniformly spaced
viding the initial inclination is smalli(< 10°). between 0 and 170Hence, for givere, we ended up with the
(3) The test particles starting near the separatrices of the BiBnmber of escapes/survivals attitr(@ <t < 4.5 Byr) as afunc-
MMR and withe < 0.1 usually spend a time period exceedingion of A°.
10° years witho alternating between libration and circulation. Figure 4a shows the number of surviving particles at 1, 2, -
At these eccentricities, orbits are well separated from Neptuaed 4 Byr fore = 0.2. All particles withA®? < 95° survive while
and the chaotic region at the borders of the 2:3 MMR is confin¢ltose withA? > 125" escape. For intermediate amplitudes the
from both sides ira, which does not permit a definitive escap@umber of survivals smoothly decreases with. The profile

4. THE MARGINALLY UNSTABLE REGION

The chaotic diffusion in the 2:3 Neptune MMR is dominatec
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1000

is less steep for = 4 Byr than fort = 1 Byr corresponding to
the fact that test particles with initially smallex, escape on
longer time intervals. The profile &t= 4 Byr should roughly
correspond to the current density of the 2:3 resonant objects a
intermediate amplitudes. However, it is too early to draw con-
clusions about whether this profile represents well the real 2:3
MMR population, because too few Plutinos are presently known.
Figure 4b shows the number of test particles escaping for
t < 4.5 Byr (crosses) antl< 3.5 Byr (stars) fore = 0.2. It also
shows their difference, which is the number of particles escaping .,
in 3.5 <t < 4.5 Byr (triangles). This last quantity approximates -
the current escape rate from the 2:3 MMR. The test particles
giving a contribution larger than 1% start at 261 A, <124,
We define a place in the phase space tmbeginally unstable
if the escape rate to Neptune crossing orbits=at4 Byr is more
than 1% of the initial population per 1 BYiThe places for which
the escape rate at= 4 Byr is less than 1% are: (i) strongly un-
stable, where most of the original population escapes & Byr
so att = 4 Byr there are too few surviving bodies, and (ii) prac-
tically stable, where the mean lifetime of bodies is much longer
than the age of the Solar System and the escape riate 4tByr 7 !
is also negligible. For practical reasons, we assume the escap  o.00 B e e e IR
rate att = 4 Byr to be equal to the relative number of escapes 0 20 40 60 80 100 120 140
between 3.5 and 4.5 Byr and identify the marginally unstable re- sigma amplitude (deg)
gionas _the interval oA, in which more_than 1% of the original FIG.5. The position and width of the marginally unstable region in depen:
population leaks from the resonance ib &t < 4.5 Byr. dence ore. We compute the marginally unstable region as the place where mo
Figure 5 shows how the width of the marginally unstabl@éan 1% of the initial population escapes i & t < 4.5 Byr. This percentage
region depends ore. For Q05<e<0.35, we show the corresponds in our experiment to more than 10 escapes (from 1000)—dast
number of escapes at®<t < 4.5 Byr (triangles) and trace hor?zontallines.The dotted lines show the boundaries of the marginally unstak
the left and right borders of the marginally unstable regiorrfglon'
where the number of escapes was larger than 10 (from initia
0

iy

eccentric
1Ag 1 ise| u) 000 | woyj sadedss Jo ssquinu

ution to the currently escaping objects from the 2:3 MMR
wever, primordial orbits a& = 0.35 would have been rare.
eThe one—dimensional random walk model is incomplete als

much for 01 < e < 0.27 and accounts for 2030 centered at °'€ "~ 0.05. There the test particles must first chaotically evolv

A, ~ 110. This roughly corresponds to the area affected by A8 largere _before they can leave ',[he resonance by close el
4:1 three-body resonance (Figs. 2 and 3). Duretzal. (1995) counters with Neptune. This evolution can be slow arft-10°

found that the resonant bodies are unstable on billion year tiffgdrs may pass befor_e a particle defini_tely leaves the resonan
scalesifinitially 70 < A, < 130°. From Fig. 5, we would rather For this reason, _the !ImItS of the margmall_y unstable region &
say that the lower limit of this range is 9Ql00 for a wide e = 0.05 shown in Fig. 5 are only approximate. On the othe

range ire, and resonant KBOs with 76< A, < 90 are perfectly hand, no Plutinos are observed at these eccentricities so that
stable ’ contribution of objects initially aé ~ 0.05 to the total present

For e = 0.3, the marginally unstable region extends fronjtX Of the escaping bodies from the 2:3 MMR is small.

about 55 to 105 and occupies more than half of the resonant

space. According to Fig. 3a, the diffusionAy is faster ae =

0.3than at smalle, allowing for larger mobility of test particles.
Fore = 0.35, the marginally unstable amplitudes are those baﬁ

1000 test particles—i.e., larger than 1%), by spline smoothil
(dotted lines).
The size of the marginally unstable region does not chan

5. AN ESTIMATE OF THE RESONANT POPULATION

We proceed with the calculation of ratios between the nun

. ) ers of primordial, current, and escaping (in the last 1 Byr
tween 0 and 40. Here however, the model of one—dimension odies. Let us suppose that the angles of 2:3 resonant bod

_rand_omtwatljk '?A" mlgh;no: bslreallsttl)gtbelc\:lal:s?ha ts$all chagggnd their semi-major axes were initially uniform. We show late
in e (instead ofA,) can destabilize orbits. Note that the numbey, .+ s assumption is not in contradiction to the scenario i

of late escapes at thesis large (~20%) suggesting a large COMwhich the 2:3 MMR objects were captured by resonance swee

ing (Malhotra 1995). Moreover, we suppose that the inclination

2|If P(t)is the percentage of test particles escaping from the initial populatiéme.re n?}t gxcesswely Ia_rge' sothatthe dlf'fl'.ISIon speed measur

in the time interval [0t], then by the escape rate at titnere mean the derivative ati = 5° is representative (observed Plutinos have on avera
of this function. i =9.3).



RESONANCES IN THE TRANS-NEPTUNIAN REGION | 293

The number of primordial objects with orbits withindround sulted from the capture by resonance sweeping (Malhotra 19¢
given A, is proportional to the volume in the phase space occhier Fig. 4), we find no difference for A, < 90°, where the
pied by such orbitsAV (A, ). In the averaged, planar, circularcaptured population is exactly proportional to the volume. Cor
model of the 2:3 MMR, with Neptune as the only perturbingequently, the non-uniformity of Malhotra’s captured populatiot
body, this volume can be easily determined. The above modtelthis range ofA, is not a result of some special process in:
is integrable and the trajectoriesano are computed on mani- volved in the resonant capture, but rather reflects the unifor
folds of the motion integraN = /a(—2/3+ +/1 — €?). The distribution ina and orbital angles. The captured populatior
areaV (A,) enclosed by a trajectory is computed as is peaked at moderate amplitudes due to the dynamic ins
bility at large A,. The position of this peak irA, depends
on the eccentricities of the pre—capture objects and the rate
which the resonances sweep through the primordial KB. It ce
be expected that small pre—capt@wrand even a slow sweep-
ing rate would result in a resonant distribution peaked at sm¢
whereo is the time derivative o and the integral is evaluated a_ \yhile largere and faster sweeping would lead to a post
over one period o . The derivative oV (A,) with respect 10 captyre population that covers the stable resonant space m
A, times T is the needed volumaV (A,). This volume grows piformly (i.e., following the dashed line in Fig. 6a). In the
with A, which means that the orbits with initially largg were example given by Malhotra (1997), the resonant population
more common. For instance, the volume occupied by orbits @aked at 90and it is in fact very close to the uniform cover-
A, = 85 is a factor of 10 larger than the volume occupied bgge of the 2:3 Neptune MMR eroded at larg over several
orbits atA, = 10°. This implies that the primordial orbits at1(7 years, which was the time used in the capture simulatiol
A, ~ 110, i.e., in the marginally unstable region, were by &or this reason, our assumption of initially uniform semi-majo
factor of 10 more numerous than the primordial stable orbifges and angles approximately holds for the resonance sweeg
with small A,. scenario.

In Fig. 6a, the dashed line shows the initial distributiomin We assume a primordial populationd;i,, bodies uniformly
resulting from a uniform initial distribution in orbital angles andjistributed ina, 1, , andQ (not in A,), initially located at
a. Comparing this distribution with the one that would have rgne samee in the stable and marginally unstable regions witt
A, < A: (A% is the outer border of the marginally unstable
region—fore = 0.2, A* = 127). Then, we compute for each

T,
V(A) = /0 (a(t) — o dt, (5)

N2:3, e=0.2, i=5 deg

20

number of survivals
>
I

t=4 Byr

+3 deg

141 g
1E+0

181 +3 deg

number of escapes

3.5 <t<4.5Byr

+0 deg

1E-3
I ' |
0 40

' I
80

sigma amplitude (deg)

120

As,

AV (A, €)

Nesd As, €) = Nprim X V(Aj;(e))

X fesd As, €), (6)

where fes{ A;, €) is the percentage of objects with initiales-
caping from initial A, in the last 1 Byr (Fig. 5)Nesd Ao, €) is
the number of objects with initiad having the initial resonant
amplitude within 2 of A, and escaping in the last 1 Byr. The in-
tegral of the above expression over the amplitudesA), < A*
givesNesd€), which is the total number of escaping objects witt
initial e in the last 1 Byr. Foe = 0.2, the total area enclosed
by the trajectory withA* is V(A% (e)) = 1166 AU x deg, and
Nesd€)/Nprim = 0.0165, i.e., some 1.7% of the objects initially
present ae = 0.2 in the 2:3 MMR escape in the last 1 Byr.
We have calculated the same ratio alsodet 0.1 ande = 0.3
(Table ).

IntegratingNesd€)/ Nprim Over e allows us to determine the
total fraction of objects escaping per 1 Byr from the 2::
Neptune MMR att = 4 Byr. From Table I, and assuming an

FIG. 6. The number of test particles surviving &= 4 Byr (a), and the iNitially uniform distribution ofe in the interval 01 <e<0.3,
number of escapes inB< t < 4.5 Byr (b), as a function oA, . The dashed line this fraction results in 1.2% bodies per 1 Byr. Moreover, usini
in (a) shows the density (pef)iof the original population of 1000 test particles.the results of Section 4 (e.g., Fig. 4a) together with a relatic
The bold line denoted-0° shows how the population is erodedtat 4 Byr  gjmjjar to that of Eq. (6), it is also possible to determine the frac
under the effect of slow chaotic diffusion driven by four outer plan&&ﬂ'{f). . ) .

The erosionis larger f@rAki® = 1° 2° and 3, the latter being denoted By3°. tion Nsun(€)/ Nprim Of objects that survive at= 4 Byr (Table I).
Integrating this fraction ovee we obtain that 70% of objects

Note in (b) how the active region, where objects escape5n<3 < 4.5 Byr,
enlarges with increasing contribution of the collision/scattering kicks. survive in the 2:3 MMR at = 4 Byr. Below, we calibrate these



294 NESVORNY AND ROIG

TABLE | wherer;.3 = Nes¢/ Nsurv 1S the relative fraction of the present
The Statistics of Surviving and Escaping Populations resonant population that escapes from the 2:3 MMR per tim
in the 2:3 Neptune MMR interval. From previously determineMese/ Nprim and Nsur/

Nprim, F2:3 = 1.7 x 10~1*year?. This number is smaller than
e A (deg) V(A;)(AUxdeg) Neso/Nprim Nsun/Norim  Nesc/Nsur rkg = 3—4x 10~ year? determined by Duncaet al. (1995)

01 135 107.4 0.00937 0.827 0.0113 for the whole classical KB (including the 2:3 Neptune MMR).
(92.1%) (52.3%) (94%) (51.3%) Substituting -3, Nec, andtgcin Eq. (7),Nsyy = 4 x 10° 2.3/l

0.2 127 116.6 0.0165 0.810 0.0203 Assuming fo.3;a1 = 0.15 we conclude that there are currently
(100%) (100%) (100%) (100%) @ % 10° objects withHt < 9 in the 2:3 Neptune MMR.

03 112 89.3 0.0121 0.563 0.0215

This number is about the same as th& % 10° comets esti-
mated by Morbidelli (1997). There are several differences be
Note.The individual columns are eccentricitg)( amplitude limiting the sta- tween this and Morbidelli’s work: (1) Morbidelli estimated that
ble and marginally unstable region&), area enclosed by the curve with am-the volume of the region where bodies are either on invariant to
plitude A7 (V(A;3)), and ratiosNes/ Norim, Nsurv/ Nprim, andNese/ Nsun Where — or having orbits with diffusion speed too slow to escape fron
Nsurvis the number of bodies surviving = 4 Byr (determined from Eq. (6), 6 23 MMR over the age of the Solar System is about 40% ¢
with faud A;) for @ = 0.2 shown in Fig. 4a). The percentages in brackets ¥the volume of the moderately slow diffusion region. In this work
the relative contributions af = 0.1 ande = 0.3 with respect t@ = 0.2. :
we estimate the volume of the stable region to be about 80%
] the volume of the marginally unstable region. (2) Morbidelli as
numbers by the number of bodies needed to keep the obserygghed thatf,./a1 = 0.25, while fo.3/z = 0.15 in our estimate.
population of the Jupiter—family comets (JFC) in steady statgg) The initial conditions with smalh, were almost absent in
According to Levison and Duncan (1997), the total numbgfioridelli's work. This can be presumably due to the choice
ofvisible (q = a(1 — ) < 2.5 AU) active and extinct JFCs with of 5 — 39,5 AU in his experiment, which is not necessarily the
Hr < 9 (Hy is the total magnitude of an active corf)gs about semi-major axis corresponding £, ~ 0 because of the short—
500. The main uncertainty in this estimate comes from the NSeriodic variations induced by Jupiter. (4) WhMNase/ Neury =
cessity 'to compute the ratio between the numbers of extiggi 1 in Morbidelli (1997), in this papeNesy/ Nsuny = 0.017.
and active JFCs: Levison and Duncan (1997) adopted a phgsy Morbidelli's calibration used estimates of Duncanal.
ical lifetime of an active comet to be 12,000 years, and detfgg5) who found that the needed flux to sustain the JFC is 0.
mined the above ratio to bef Moreover, Levisoet al.(2000)  comets/year, while this work usééc/tec = 0.068 comets/yr
estimated the ratio between the JFCs and the ecliptic comgtsy, Levisonet al. (2000). In view of the above differences,

(ECs) (i.e., comets having their Tisserand parameters larggs agreement between oMk, = 6 x 108 and Morbidelli's
than 2 unless they are on stable orbits in the trans-Neptunign | — 45 x 10% is rather surprising.
region). Then, they computed the current number of the ECs to
be Ngc = 1.3 x 10’ and also determined their mean dynamic
lifetime: tec = 1.9 x 108 yr. 6. A SIMPLE MODEL OF COLLISIONS/SCATTERING

The EC may be resupplied from the classical KB (3& < ) ) _ )
50 AU, moderate) or may be a remnant of the massive Scattered Until now, we did not address other possible mechanisms
Disk (SD; Duncan and Levison 1997). Denotefy, o the ratio which the 2:3 resonant objects could be destabilized: (i) coll
of the number of comets escaping from the 2:3 MMR to theional fragmentation, (ii) collisional non—disruptive kicks, (iii)
total contribution of the classical KB and SD. If, for instancdnutual dynamical scattering at close encounters, or (iv) the d
most comets come from the classical KB (including the oAamical scattering by Pluto. Detailed analysis (_)f the effect c
Neptune MMR) and the contribution of the SD is negligible, thef{l€S€ Processes goes beyond the scope of this paper, but

it would be reasonable to assume thag/a ~ 0.1-0.2. Indeed, Nave attempted to simulate them by a simple scheme, adding

i o ) . - O
the current population of the 2:3 Neptune MMR is estimated &> (I-€-, the change ik, due to the dynamic chaotic diffu-

. . k k
be between 10 and 20% of the classical KB population (JewP" Ed- 2) an arbitrary quanti$/A7™ assumed to come from
et al. 1998). the random kicks generated by the above processes. Not knc

The current number of objects in the 2:3 Neptune MM the dependence oA one, i, andA, (andtime), we have

kick
(Nsun) corresponding tédr < 9 can be computed from assumed A7 to be constant. _
Farinellaet al. (2000) estimated that the population of KBOs

Nec larger than about 100 km in diameter has not been significant
’ (") altered by collisions over the age of the Solar System. Thi

means that collisional fragmentation is not relevant for larg
bodies. Conversely, this mechanism may be dominant for sms

31t is unclear how to relate the absolute magnitude of an active comettt)c%)d.es since about 10 fragments. 1 to 10 km in size. are ¢
the diameter of its nucleus. According to Levisetnal. (2000) and references : ! u g ! In size, L

therein, the absolute magnitudes < 9 should roughly correspond to diameters'€Ntly produced per year in the KB at 40 AU (Farinettaal.
D > 1-3km. 2000). With ejection speeds of 10—100 m/s, these fragments he

(76.6%) (56.0%) (53.3%)  (81.1%)

Nsurvr2:3 = 1:2:3/a1ll
tec
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semi-major axes about 0.1-1 AU different from those of their 1000
parent bodies.
Levison and Stern (1995) investigated the effect of collisional
and scattering kicks on Pluto and found that the gravitational =
scattering by 1-330 km objects is much more important than® i
physical collisions. From their Fig. 8 we can infer g
is on the order of 10per 5x 10’ years, but this assumes a
dense primordial population of 2x 10" comets per AY near
40 AU, which is more than a factor of 100 larger than the cur-
rent population of the KBOs at 40 AU. BAS® scales lin-
early with the number of objects, then this indicates that the
currents AS@ of Pluto should be on the order of10 per 5x
10’ years. Recall that smaller bodies must be scattered more thaé
Pluto. E
Nesvorry'et al.(2000) calculated the random walk of Plutinos - - +0 deg
driven by the gravitational scattering by Pluto. Whilefat 5°,
§ APl js on the order of 1per 45 Myr, fori > 10° § APV =
2°—6 per 45 Myr, depending on the eccentricity. 0 1
Figure 6 shows the results of random walks characterized by
6A§‘“ + (SA?CK, where we choose different Vame%(lf(:k- The FIG.7. The number of escapes per 1 Byr is shown as a function of time fc
scale on thg-axis corresponds to 1000 test particles at 0.2, sAS% = 0°, 1°, 2°, and 3. The original population accounted for 1000 test par-
initially distributed between 0 and\j; according to the area ti(_:les ate = 0.2, distributed between @ A, < A} following the dashed line in
occupied by the orbits with giver, (dashed line in Fig. 6a). ™9 62
This scale gives the number of particles perlh Fig. 6a, we . . .
show the number of surviving test particles at 4 Byr and in of collisions/scattering to .the general rangjom walk in the 2:
Fig. 6b we show the number of particles escapingin3t < 4.5 Neptune MMR on the basis of th? comparison W'th.F'g' 6a.
Byr. Bold lines (denoted by-0) are the results of purely dynamic _Flgure _6b ShOV_VS how the mar_g!nally unstat_)le rengCkenlargc
random walk with no contribution of kicks. Thin lines show thé“fth the increasing role of collisions/scattering. Fok; =
results fors ANk = 1° 22 and 3 per 45 Myr, respectively (the 3", Neso/Nsury = 3.1%—almost double the 1.7% determinec

last one being denoted by3). Table Il summarizes the statisticsfrom the dynamic chaotic diffusion alone. I_fthe fprmer percent
of surviving and escaping particles in each case. age were true, the prese_nt number of objects in the 2:3 MM
The current density of objects in the 2:3 MMR should roughl ith Hr <9 WOU'? be estlmr?tedbto be ab(;)ult§3108 (assumlnhg
correspond to one of the curvesin Fig. 6a. The erosion at lyge ‘232l = 0.15). ?] courlse t”.e.a O|V§ modet s a v;]ary rough ar
increases with the increasing role of random kicks. The densﬂg’x'mat'gn of the real collisional dynamics in the 2:3 MMR
peak shifts fromA, = 105", when the evolution is dominated by cause it does not account for the disruption of bodies al
pure dynamic chaotic diffusion, #, = 85°, whens Akick — 3° does not allow for the resulting changes in the size distributic

Moreover, for§ A% = 3° the density curve is much flatter O ODJECtS.
than that fors Ak = 0°. The values oNeyry/ Nprim in Table Il In Fig. 7, we show the number of escapes per 1 Byr (scaled

show that the primordial population of the 2:3 MMR is reduceﬁ]e primordial population of 1000 test partigles@ <A =
to 56% for s Ak — 3> and only to 81% fors ANk — 0. We 1277 fore = 0.2) from the 2:3 MMR as a function of time. As ex-

believe that with increasing knowledge of the orbital distribLPeCted’ most escaping particles leave the resonance hByr.

tion of Plutinos, one should be able to estimate the contributignt"® 2,:3 MMR s the sole source of bodies crossing oute
planets’ orbits, then the cratering record on planetary satelliti

should have a time dependence similar to that of the curves
Fig. 7. A steeper cratering rate in the last 3 Byr would indicat
a significant role of collisions and/or scattering in the sourc

100

+3 deg

of escapes from 1000 per

2
time (Byr)

TABLE Il

The Statistics of the Primordial, Surviving, and Escaping Popu-
lations at e=0.2 for Different Contributions of Random Kicks Gen-

erated by Collisions, Mutual Scattering, and Scattering by Pluto region.
Nesc/ Nprim Nsurv/ Nprim Nesc/ Nsurv 7. THE RUN FOR LARGER INCLINATIONS
SAJT 4§ AKeK (%) (%) (%)
The estimate of the maximum LCEtat= 10® years is plotted
A 1-82 81.1 ;-OZ in Fig. 8a as a function of initiad andi , and for the second set of
22'; ’ > o o 25 initial conditions (Section 2). The initia was 39.41 AU, which
SA, + 3 3.06 56.3 544 Means thatthe test particles started With= 60°, i.e., with A,

only slightly smaller than most observed 2:3 resonant object
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The libration centers (dashed line) and separatrices (full lines)The stability of small-A,, orbits in the Kozai resonance is ev-
of the Kozai resonance were computed for = 0 by a semi- ident on the evolution of frequencies. Far 10°, 8§, ~ 102
numerical method. The minimum distances of test particles ¢ 45 Myr (Fig. 9e), which means only a 1% change in 4.5 By
Neptune in 18 years are shown in Fig. 8b. The color coding i§ori = 15° andA, = 60°, the stable motion in the Kozai reso-
the same as in Fig. 2. The eccentricity and inclination of Pluteance extends atZ2 < e < 0.29, which roughly corresponds to
() and known Plutinos (large dots) are shown at the intersectidg < 50°. For larger initial A, f, significantly evolves and at
of their trajectories witly = 180° andw = 90° (from Nesvorly” the separatrices of the Kozai resonaf€g is as large as 10%
et al.2000). over the age of the Solar System.

The central, weakly chaotic region of the 2:3 MMR extends to Although our initial conditions do not cover the region at
high inclinations (Fig. 8a). While the convergence ofNft)/t i > 25, it is very likely that the stable motion in the center of
to an asymptotic non-zero value-{0-8°-10""year!) is ev- the Kozai resonance extends to higher inclinations. In such
ident for all trajectories in the Kozai resonance, we have LGfase, the result of Duncagt al. (1995) that the MMRs with
<10~ "yr~late = 0.1. The chaotic region at smallwhere LCE Neptune have a destabilizing effect for 25° is only approx-
~10-5-1075° yr~1, slightly enlarges with increasinig(from imate. Indeed, the initial conditions of highsimulations of
e<0.05ati =5°toe<0.07 ati = 25°). This chaos is almost Duncanet al. sampled orbits witlke < 0.1, which according to
certainly due to the overlap of the 2:1, 3:1, and 4:1 seconddfig. 9 are more easily destabilized by secular effects.
resonances, because thgsecular resonanceis limitedite: 10° Note in Fig. 9e the slightly anomalous value &, at the
and has alarge libration period. The region of escapes &35 dotted—dashed line. We have identified it to be the secular re
for i = 5° shifts to largere with increasing . This is either due onance with angle + wy — Q. Figure 10 shows the evolu-
to the changing positions and sizes of th@andv,g secular res- tion of this resonant angle for the test particle started at
onances or because the orbits with large inclinations are be®8r41 AU, e = 0.135, andi = 15°. This secular resonance is
separated from Uranus. The minimum distance of test particlesually denoted by — s + gg — sg, whereg = f_,s = fq,and
to Neptune decreases froR20 AU in the center of the Kozai gg = 0.6727'/year ands = —0.6914' /year are Neptune’s per-
resonance te~15 AU just outside its left limit and further to ihelion and nodal mean frequencies. We have plotted its positic
~10 AU ate ~ 0. in Fig. 9e from f(e, i) and fu(e, i) calculated by frequency

Figure 9 shows the chaotic change of orbital elements aadalysis. For < 15°, this resonance does not provide an escaf
frequenciesin 45 Myr. The computational procedure was exacihg route from the 2:3 MMR because it is confined from bott
the same as that in Section 3.2 (Egs. 2—-4). sides ine by more regular motion. For larger inclinations, tran-

The dependence &fA, (Fig. 9a) on the initial orbital ele- sitions to separatrices of the Kozai resonance and to theglow.
ments has characteristics similar to those of the LCE (Fig. 8ahstable region are possible. The- s + gs — ss secular res-

3 A, is large fore < 0.05 (~20°-30° per 45 Myr) showing the onance does not appear in the plot of the LCE because of t
instability of the corresponding orbits. These orbits evolve targe period of its resonant angle.
the separatrices of the 2:3 MMR in severaf y@ar. Such evo-

lution is accompanied by a random walkdandi), which gets 8. THE DISTRIBUTION OF RESONANT OBJECTS
faster near separatrices, whée=> 0.05 (§i > 5°) per 45 Myr
(Figs. 3b and 3c). From 191 KBOs currently registered in the Asteroid Orbita

8 A, is moderately larger in the Kozai resonance-@ per Elements Database of Lowell Observatory (September 199¢
45 Myr) than in the rest of the resonant spacd{ per 45 Myr 68 objects fall withn a 4 AU semi-major axis interval around
ate = 0.1). This can also be an effect of the 5:1 three-body red9.45 AU. Twenty-two objects have well determined orbits ant
onance located aA, ~ 60°, where our initial conditions cross 46 objects have the eccentricity assumed. The latter group re
the resonant space. resents orbits with small observational arcs and orbital elemer

Thee andi evolutions (Figs. 9b and 9c) are moderately erihatare very imprecise. Indeed, we have verified that most orbi
hanced at the separatrices of the Kozai resonasee-(si > Of the first group are stable inside the 2:3 MMR and that mo:
10-25). The orbits starting with largé,, significantly evolve in Orbits of the second group are unstable on unrealistically shc
eandi on billion year time scales. At> 10°, the right separa- time intervals.
trix of the Kozai resonance is separated only by 0.03-0.@4 in Next, we have integrated the 22 objects of the first grou
from the high-e unstable region. As the expected chaotic evé@nd Pluto (as massless test particles) with four giant plane
lution of e on 4 x 1C° years is of this size, most of the initially for 10’ years using the symmetric multi-step integrator. Period
large-A,, orbits withi > 10° are unstable. These findings arghorter than 1200 years were suppressed by digital filtering.
in agreement with the results of Levison and Stern (1995) con-Table Il shows the orbital characteristics of Pluto and 1!
cerning the stability at Pluto—like inclinations. The two PlutinoBlutinos that were found on stable orbits ovef y8ars inside
residing just outside the right separatrix of the Kozai resonanid® 2:3 MMR. Figure 11 shows the maxima and minima of thei

ate = 0.32—Q33and < 5° occupy a space where the evolutior®, € andi on 10’ years (the plot of the LCE was adapted from
in eis moderate. Figs. 2a and 8a to a grey scale). In Fig. 11a, we plot a pair «
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TABLE Il

Pluto and KBOs Found in the 2:3 MMR

z
©

Distance

Designation As A, min max €min €max imin i max
1 Pluto 16.7 84.8 22.8 39.297 39.622 0.214 0.270 14.40 17.40
2 1993 RO 115 123.0 — 39.195 39.711 0.188 0.210 1.96 6.01
3 1993 SB 20.1 65.2 — 39.311 39.618 0.308 0.324 1.48 4.98
4 1993 SC 14.5 76.7 — 39.315 39.597 0.172 0.196 3.77 8.01
5 1994 JR1 11.5 94.5 — 39.279 39.621 0.111 0.138 1.14 5.73
6 1994 TB 17.6 54.5 73.2 39.358 39.555 0.178 0.317 12.10 21.30
7 1995 HM5 16.1 72.4 — 39.317 39.606 0.206 0.268 2.86 9.84
8 1995 QY9 10.5 132.0 — 39.143 39.789 0.249 0.267 3.61 7.75
9 1995 QZ9 15.0 41.5 — 39.396 39.501 0.115 0.178 17.20 21.80
10 1995 RR20 10.4 130.0 — 39.180 39.731 0.171 0.197 2.49 7.68
11 1996 Sz4 15.0 91.5 — 39.274 39.654 0.206 0.262 3.00 9.83
12 1996 TP66 21.7 17.2 — 39.409 39.510 0.314 0.334 5.49 9.21
13 1996 TQ66 13.8 27.6 — 39.413 39.472 0.088 0.130 13.10 16.60
14 1997 QJ4 15.0 102.0 35.1 39.259 39.665 0.207 0.263 14.10 18.50
15 1998 HK151 17.6 47.3 79.2 39.366 39.551 0.218 0.259 0.87 8.72
16 1998 HQ151 19.6 43.6 — 39.370 39.551 0.270 0.314 10.70 14.60
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Note.Minimum distances to Neptune are shown in column 3 (Distance). Angles are in degrees; distances and semi-major axes are in
astronomical units. Minimum and maximum filtered orbital elements were computedfgeafs.

secular resonance g—s+g8—s8

|
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FIG. 10. The evolution of the angle — ton + Qn of a test particle located in the secular resonanees + gs — Ss.
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LCE LCE

eccentricity
inclination (deg)

39.2 39.4 39.6 39.8 0 0.1 0.2 0.3

semimajor axis (AU) eccentricity

FIG.11. The orbital distribution of Plutinos. The arrows indicate the maxima and minima of the orbital elementy#at®(Table I1l). Note the two groups
in (b) characterized by smal+5°) and large {16°) inclinations.

two—headed arrows per object, one at the minimum and oneaa¢ no Plutinos wittA, smaller than the amplitude correspond-
the maximum values of. Each of these arrows connect théng to the 5:1 three-body resonance.
minimum and maximum values of the objecéqTable III). The void region at smakk cannot be a consequence of the
In Fig. 11b there is only one arrow per object connecting thabservational selection effect, because many KBOs on orbi
two points with coordinate®fin, imax) @and €max imin), respec- with e <0.1 have been found at larger heliocentric distance
tively. For Pluto and Plutinos in the Kozai resonance, where tf#2 < a < 45 AU) than the 2:3 MMR. Note that a similarly un-
evolutions ofe andi are correlated, the arrows in Fig. 11b appopulated region exists at 37a < 39 AU ande < 0.05 (one can
proximately indicate the true variation efandi. For Plutinos partially see it in Fig. 11a just outside the left separatrix of th
outside the Kozai resonance, these arrows delimit the extensibb® MMR) and has been discussed by Duneaal. (1995). It
of a rectangle where andi evolve. was suggested by them that the clearing occurred there duri
Figure 11a shows that Plutinos are well accommodated withime early stages of the Solar System formation. The two ma
the central stable space of the 2:3 MMR. Only 1995 QY9 arstenarios of how this may happened are the planetary migratic
1995 RR20 have large resonant amplitudds € 132 and sweeping resonances scenario of Malhotra (1995) and the e
130, respectively), and if their orbital elements were well detecitation of e (andi) by large planetesimals suggested by Peti
mined from observations, these objects should escape from ¢hal (1999). It is possible that the void region at sneadif the
resonance within Foyears. Moreover, 1993 RO is on the borde2:3 MMR has a similar origin.
between the marginally unstable and strongly unstable regiond he void central region at small, < 60° is a real puzzle. It
with A, = 123, e = 0.2, and small. The orbital elements of is true that the resonant bodies with smajl are expected to
these Plutinos derived from observations should be slightly ihe less numerous than the ones with lafgeas they occupy
correct because, otherwise, the suggested escape rate fromattedatively small volume in the phase space, but, on the oth
2:3 MMR would be unrealistically large (more than 5% of théand, the observed void at sm&, in the 2:3 MMR is more
current population per £o/ears). pronounced than what would be inferred from the above argt
There are two unpopulated stable regions, one at small eccerent. If confirmed by future observations, this void may be
tricities (005 < e<0.1) and the other in the center (38< consequence of the scattering effect of Pluto (Nesyvatal
a < 3955 AU and 015< e < 0.3). Note that fore> 0.1 there 2000).
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One can clearly distinguish two groups with different inclinato be well sampled by known Plutinos. These voids may b
tionsinFig. 11b. There are 10 low-inclination objedtgt < 10°  either dynamically primordial or a consequence of collisions an
and average of %) and 6 high—inclination objects (includingdynamic scattering in the resonance. Two groups Wwith5°
Pluto—imin > 10° and average of I§. The latter group was andi ~ 16° were identified. If the latter one is a product of the
conjectured to be a remnant of the collision in which the Plutduto—Charon binary formation event then 1997 QJ4 is a goc
Charon binary formed (Steret al. 1999). Indeed, there is nocandidate for a member of Pluto’s family.
dynamic reason for the intermediate inclinations being under-In a second paper (Nesvgrahd Roig, 2000), we extend the
populated. present analysis to the 1:2, 3:4 and fine mean motion resonan

Apart from Pluto, only one object—1997 QJ4—was founih the trans—Neptunian region.
with stable libration in the Kozai resonance. It has ~ 35°.
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