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Abstract. The orbital evolution of the dust grains of radius ~
10 pm, close to the exterior resonances with the Earth is in-
vestigated. Especially resonances 6/7, 5/6 and 4/5 were studied
as they are close enough to the Earth orbit and our numerical
experiments proved their higher capture efficiency. Numerical
simulations were compared to the semi-analytical approach of
the circular restricted problem with Poynting-Robertson drag.
The disturbing function has been averaged over the fast variable
numerically, It was shown that due to convergence problems the
disturbing function cannot be approximated by the usual trun-
cated series. Even if the terms of the fourth order in eccentric-
ity e are included, a qualitatively different picture is obtained.
Using the semi-analytic approach we found stationary solutions
where the resonance effect cancels the drag. Where there is cap-
ture in nuroerical simulations, the solution clearly approaches
these stationary points, The amplitude of the resonant variable
is, however, slowly increasing which has to lead eventually to
close approach to the Earth, and the capture is only temporary.
The particle may be trapped even for times of the order of 10°
years in the circular case.

The equations linearized numerically in the vicinity of sta-
tionary point were shown to lead to one real negative frequency
and two complex conjugate frequencies with a positive real part
for typical values of the parameters. This shows the instabil-
ity of the stationary point. The 3-dependence of the stationary
points positions is given. For 3 ~ 0.1 and larger, these station-
ary points are much too close to the collision curve, where the
averaging method fails and the particle will soon be removed by
close approach to the Earth. Some inferences for the possible
distribution of grains in the vicinity of the Earth orbit are made.
The effect of other planets has been shortly discussed. It was
shown that temporary trapping is still possible, only the time of
capture is shorter.
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1. Introduction

The radiation force F acting on a particle of unit mass is

F =862 [(1 -3y - 3] o
T cCT C

and it consists of radiation pressure and the velocity dependent
part, the so-called Poynting-Robertson (PR) drag. Here G is the
gravitational constant, r is the orbital radius vector of the grain
particle, v its velocity, mg is the mass of the Sun, and ¢ is the
speed of light. The PR drag and the value of parameter 3 are
discussed in detail by Burns et al. (1979). It was shown that 3
is related to the radiation pressure coefficient (J as

8=57 10-5 9 , 2)
ps

where radius s and density p of the particle are in cgs units.
Having employed the Mie theory to determine ¢, Burns et
al. (1979) presented the dependence of 3 on radius s for var-
ious materials. Most of our numerical simulations were per-
formed with 3 = 0.01, corresponding to radius s ~ 20 pgm (for
p ~ 3 g/em? and geomelrical optics limit ¢, = 1). The semi-
analytical calculations, especially the determination of station-
ary points, were performed for various 3.

It is well-known that the orbit of a dust particle around the
Sun under gravitational and radiation forces, Eq. (1), evolves so
that both its semimajor axis ¢ and its eccentricity e decrease. The
problem is integrable and the time evolution of e and a can be
expressed in quadratures (Wyat et al. 1950). The possibility of
resonant capture of the falling particle in the interior resonance
2/1 was studied by Gonzi et al. (1982). They concluded that the
grains always cross the resonance region without any oscillation.

For the exterior resonances the possibility of resonant cap-
ture was first documented in numerical simulations by Jackson
& Zook (1992). They showed that a 100-gm-radius grain, re-
leased at perihelion passage from asteroid Hungaria, would be
captured at the 5/6 resonance with the Earth for more than 10° y.
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Fig. 1. The patticle is captured in the 5/6 resonance

The slow decrease of the semimajor axis is stopped, and eccen-
tricity sharply increases to some limiting valve. These results
stimulated our investigations.,

The different behaviour while passing through the exterior
and interior resonances was explained by Weidenschilling &
Davis (1983) in their study of planetesimal orbit in resisting gas
medium and by Sicardy et al. (1993) for the grain particle with
PR drag. They showed that, while for exterior resonances the
resonant contribution may compensate the radiation decrease of
the semimajor axis and stationary points may exist, this is im-
possible for the interior resonances. The interior resonances in
the restricted three-body problem were studied in many papers
in relation to the existence of the asteroid belt and its resonant
structure (Kirkwood gaps). The possibility of the capture of the
grains in exterior resonances made it necessary to study first
these resonances in the simplest planar restricted problem with-
out PR drag to understand the phase space of the problem, its
singular solution, etc. This gap was filled by Beaugé (1993) who
proved the existence of asymmetric libration centres (ALC) for
the 1/2 and 1/3 exterior resonances using the averaging of dis-
turbing function, The ALC were first found by Message (1958)
who used a truncated disturbing function. They do not appear
at interior resonances. We found no ALC at exterior resonances
6/7, 5/6 and 4/5, even if they seem to be there (e.g. for 5/6) if
one employs a truncated disturbing function of the fourth de-
gree in eccentricity. This difference indicates that the truncation
method is unsuitable for these resonances. Indeed, the Sundman
(1915) condition for convergence of the series for the disturbing
function clearly shows that the series is divergent for a corre-
sponding to these resonances at e corresponding to the ALC
obtained by the truncation method, see the discussion in Sect.
4. To determine the stationary points we used the quite general
equations of Beaugé & Ferraz-Mello (1993a). Our Eqs. (18) are
expressed in different variables but they may be shown to be
equivalent to Beaugé & Ferraz-Mello (1993b, Eq. (14)). They
applied this approach to the 1/2, 2/3 and 1/3 resonances Beaugé
& Ferraz-Mello (1993b). They used the adiabatic invariant the-
ory and discussed the capture probability of the particle in these
resonances. For each resonance they found an eccentricity limit
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under which the capture probability is 1060%. These results can-
not be applied to the Earth’s resonances 1/2, 1/3 and 2/3 as the
condition of adiabacity is not fulfilled there because p for the
Earth is too small (Beaugé and Ferraz-Mello used value close
to Jupiter’s). Our numerical experiments show that the capture
is more probable at the higher first-order resonances. These res-
onances were not investigated in Beaug & Ferraz-Mello papers
as for their high value of u these resonances overlap and capture
is not observed there.

2, Numerical simulations for the simple planar and circular
model

2.1. The capture

When a dust particle approaches some exterior rescnance the
orbit begins to exhibit characteristic changes. The gradual de-
cay of the semimajor axis due to the dissipative force is being
broken the eccentricity suddenly jumping at the same time. It
is known from the Jackson & Zook (1992) study that, under
some circumstances, this can lead to the long-term capture. We
decided at first to investigate this capture numerically in order
to obtain basic knowledge of the orbit’s evolution, hoping to
find even partial answers to these questions. What resonance
can serve as a trap and what are the initial conditions which
lead to the trapping? What is the role of the 3-parameter and
the perturber mass?

Let us assume one planet in a circular orbit with radius ¢,
and watch a dust particle released at ¢ > ;. It is influenced
by the Sun and the planet’s gravitational force and by radiation
forces, Eq. (1). For the complete differential equation refer to
the next section, Eq. (3).

We performed many numerical integrations of this problem
with different initial conditions using the programming package
written originally for integrating the N + A{ body system by one
of us (D.N.) in C-language. It is the system, where N primary
bodies are interacting (the Sun and planets) and M secondary
bodies (asteroids, dust particles) are influenced by them. The
secondary bodies neither interact among themselves, nor do
they influence the primary bodies. In application to our simple
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Fig. 2. Resonant parameter and averaged Jacobi constant in the time dependence
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Fig. 3. Eccentricity-resonant variable evolution

model only two primary bodies are included, and the radiation
forces are switched on. Various numerical methods may be used,
but we employed the symmetric multistep method of the twelfth
order (Quinlan & Tremaine 1990) which is specially convenient
for near-Keplerian system investigations.

Figure 1 shows the typical situation of a capture at the 5/6
resonance with the Earth for the # = 0.01 particle. The decay
of the semimajor axis was stopped at a ~ 1.125 AU. At the
same time the eccentricity begins to increase. This causes the
particle to cross the Earth’s orbit starting at e ~ 0.112 but
keeping the same evolution further on. Obviously, there is some
protecting mechanisms which prevents a close approach during
the later evolution. We will come to an explanation later on.
During the next period the eccentricity increases approaching
the value ~ (.2472. There are oscillations hardly visible on the
scale chosen for the figures. Their range slowly increases for
both ¢ and e to values ~ 0.003 AU and ~ 0.0007, respectively at

t = 2. 10° y. This capture is found to be temporary, because just
aftert = 2. 107 y, the particle reaches the distance of ~ 0.007 AU
from the Earth which causes its removal.

We can now compute the resonant variable o usnally used
{see the definition later, Eq. (6)) and the averaged Jacobi con-
stant C' (Eq. 12). Figure 2 shows their evolution for the same
initial conditions which were used earlier. As expected, o be-
gins to librate when the particle is trapped in the resonance. The
increase in amplitude Ieads to the libration range of ~ 150° at
the end of integration. The original decrease of C slows down
as its value approaches ~ 0.8635 .

Another interesting plot can be obtained by combining the
time evolution in e and o (Fig. 3). Here the position spirals from
the bottom to the top due to the long-term change in eccentric-
ity, but this vertical evolution is very slow. One can describe
this behaviour as librations around a slowly varying centre. The
period of these librations is about 200 y, the slowly changing
amplitudes in ¢ and e can be estimated from this figure as well,

This capture case was chosen to present the typical orbit
evolution. A wide spectrum of initial conditions leads to the
trapping at 5/6, but many of them exhibit large oscillation in
o at the beginning, and they are removed in a shorter time,
usually of the order of 10* y. There is a clear relation between
the g-oscillation range at the begining and the capture time.

2.2. Statistics

Let us now go back to our original questions concerning the
capture possibility in various resonances. From the practical
point of view we can investigate two kinds of planetary bodies.
Some like Jupiter withm ~ 107> M, or Earth-like bodies with
m ~ 2.510~% M. The main part of this work is devoted to the
exterior resonances with the Earth, although several comments
on a more massive perturber are made.

In investigating the (p+ ¢)/p resonance (for the exterior res-
onance p is negative) we chose 8 = 0.01 and introduced initial
conditions @ = @yes + 0.005 AU and e = Q. We then spreads
36 particles along the whole circle at equidistant angular dis-
tances of 10 degrees, For the first-order resonances (g = 1) and
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Fig. 4. Capture times for different first-order resonances and g = 0.01
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Fig. 5. The particle is captured in 5/6 after passing 2/3, 3/4 and 4/5

—14 < p < -2 this set of initial conditions was integrated
sufficiently long to see if capture occurred. The result is un-
equivocal; for p > —35 no trapping was detected, and starting at
p = —6 all particles were captured. To verify this, almost a hun-
dred particles initially spread along the circle were integrated,
but no capture was observed for 4/5.

Even higher degree resonances p < —14 can catch particles
(the degree of the resonance is defined here as |p|). But it was
observed that the capture is much shorter due to resonance over-
lapping and the ~ 0.001 AU oscillations at the beginning. The
same effect is more important for more massive bodies. We did
not succeed in finding long-term capture at the 5/6 with Jupiter.
Although we were concentrating on the first-order resonances,
we found several cases when the second-order resonance served
as a trap (for instance 9/11).

Figure 4 describes another of our approaches. We prolonged
the integration up to 200 000 v trying to estimate the capture time
for various resonances. The particles probably having the short-
est capture time (with the largest oscillations at the beginning)
were picked up from our set. We could thus estimate the bottom
limit. For the 5/6 resonance and our set of initial conditions the
particles were observed 1o have a life time lenger than 100000
y and up to 140000 y in agreement with our assumiption.

975

The step between 4 /5 and 5 /6 crosses the boundary between
the passage through and the capture for 3 = 0.01. If we increase
3 10 002 then this boundary shifts and no capture in 5 /6 occurs.
We succeeded in locating the boundary between 7/8 and 8/9.
For 3 = 0.04 it appears between 8/9 and 9/10. On the other
hand, if we decrease (3 to 0.001 then even the 2 /3 resonance has
the trapping capability, and the boundary shifts between 1/2 and
2/3. In this case it was found that the capture times extended
to more than 200000 y. To summarize one can say that if 7 is
increased the low degree resonances become uneffective. For
cach vaiue of 3 there exists one resonance (the lowest of the
effective resonances) which should capture the majority of par-
ticles. We wondered how the non-zero eccentricity can influence
the capture probability. At first we examined the effect of the
low-order resonances which cause the eccentricity jumps during
particle passage. Again we chose 36 particles 3 = 0.01 with an
initially circular orbit a = 1.35 AU outside 2 /3. Every particle
of this set should first cross several uneffective resonances (2/3,
3/4, etc.) and meet both 4 /5 and 5/6 with non-zero eccentricity.
Figure 5 describes the typical eccentricity evolution. The jumps
approximately at 5000 y, 14500 y and 19000 y refer to the 2/3,
3/4 and 4/5 resonances. The particle is then captored at 5/6.
But this appeared only in 10 cases. Contrary to our previous
idea, 15 particles were captured in 4 /5, 1. e. before reaching the
previously found boundary. The rest of the 11 particles passed
even 5/6 and was trapped partially in 6/7 and 7/8. It makes
the result of our initial statistics more smeary, but preserves the
general idea of the capture probability’s dependence on 3.

We did not try to extend these statistics to the initially elliptic
orbits because it gives the problem more degrees of freedom,
and this needs much more computer time. On the other hand,
with the knowledge which we gained from the analytical study
we succeeded in finding svitable initial conditions for 8 = 0.01
and even for the 2/1 rescnance capture, but they are very rare
in phase space, and it is no wonder that no particle from our set
was captured there.

3. Basic equations

Let us investigate the simple planar and circular model intro-
duced in Sect. 2. The heliocentric radius vector of the dust par-
ticle is r. Corresponding variables for the planet (the Earth) will
be distinguished by the subscript 1, so that r, is the heliocen-
tric radius vector of the planet. As usually a is the semimajor
axis, e the eccentricity, A the mean longitude, & the longitude
of the pericentre. The equation of motion for the dust particle
perturbed by the radiation force and gravitational attraction of
the planet of mass m, is

i"=VGM+VR+Y, (3)

where the disturbing function

L g) (4)

R=G
m1(|"'_7'1| L
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Fig. 6. The level curves of constant H for four different values C = 0.8, 0.85, 0.9, 0.95 for the 5/6 resonance
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Fig. 7. The collision curves which form the set of points where disturbing function R has a singularity due to the collision of the grain particle
with the Earth

and the PR drag ¥ follows from (1), J=L-G,
A
: J=G+—,
Y= -G8 (f; %) : & s
h= (prol+-A. )
1

Strictly speaking Eq. {3) is valid only for m; = 0 but as the
correction to term Y is of order ~ m; Y, it may be neglected.
As we assume that the system is close to resonance, we shall in-
troduce the canonical variables o, J, o, J1, 02, Jz used to study
resonances in the asteroid belt for the planar three-body problem

In Eg. (6) n; is the mean motion of the planet, A is the
canonical variable conjugated to time, L, G are the Delaunay
variables connected to eccentricity e and semimajor axis of the

article
(Ferraz-Mello et al. 1993) P o
. 1/2
0 = P+ QM —pA - qd, L= (na) -
qo1 = (p+ @) — pA — gz, G=L{1‘(1*32) ]
goy = A=Ay, _ Kk = Gmg(1-08). )
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Following the method employed by Beaugé & Ferraz-Mello

(1993a) and Beaugé (1993), after averaging over fast variable o,

we obtain a system similar to the Hamilton canonical equations
with additional drag terms,

, o oH

A’
o0 o O
1= ale
o, O
2= 6.]2,

. oH
J=-=_

8o (P2);

. OH
Jo= ——
1 3o, +{P + P},
L= (p+ @) (P, (8)

with the Hamiltonian

K,z Jz D -2
H=—[——U+L4 +A - (R), ©)

21q ¢
where

1 27
( >=E/o Rdo, (10)
and
-3 3 2
(F‘]) = -—Qn’y (1+§€),
(P} = Qny? (1 + %‘32 - 73) )
Q=" oo (n

Equations (8)-(11) are the basic equations governing our prob-
lem. For the circular problem Hamiltonian H 1s independent of
o and g—fl =0

977

4. Exterior resonances without drag
4.1. The averaging

The investigation of the exterior resonances and their phase
space topology received little attention. Recently this question
was addressed by Beaugé (1993) who investigated the 1/2, 1/3,
2/3 and 3/4 resonances. In Sect. 2 we saw that resonances 5/6
and 6/7 seem to be more important for the capture of grains into
commensurabilities with the Earth. That is why we concentrated
on these resonances. The calculations were performed for m;
equal to the Earth’s mass. We used the system of units where
G=1l,gi=1andmg=1.

The problem is described by Eq. (8) with 3 = 0 and there-
fore (P} = (P,) = 0. In addition to I we have two other
integrals of motion J; and J;. The system is reduced to one
degree of freedom. The motion in phase space is described by
the level curves of the Hamiltonian. As (R) cannot depend on
A, it depends only on the combination of J; and .J; independent
of A:

C =k (1J2 - ?3.11)
q q

=aﬂp+ﬂ_90_éyﬂ. (12)
q q

‘We shall denote
(R) = FB(C, e, 0). (13)

For a given C averaging in Eq. (10} is easily performed by a
simple program using Eq. (4) and the well-known relation be-
tween the rectangular coordinates and the canonical coordinates
defined in Eq. (6). Figure 6 shows the interesting part of phase
space of resonance 5/6 for four different values of C'. With in-
creasing C the resonance region is shifted to smaller values of
e. The dashed curve is the collision curve where .#2 has a sin-
gularity corresponding to the collision of the particle with the
Earth (Ferraz-Mello et al. 1993}, The collision curves for the
4/5, 5/6 and &6/7 resonances are shown in Fig, 7. Here

k=ecosog, h=esino. (14)

For a given resonance (p, ¢) and given C', only a small strip
of e is relevant. For the 5/6 resonance, for instance, a should
be restricted to interval a € (1.119, 1.145), otherwise the sys-
tem will be closer either to the 4/5 or the 6/7 resonance. The
dependence of ¢ on a for different values of C Eq. (12) is given
in Fig. 8, where the boundaries of a correspond roughly to the
required interval. The range of possible ¢ is restricted to a very
small interval which may be estimated from Fig. 8 for a given
C. That is why it is much more reasonable to illustrate the phase
space for only a small interval in e.

For the 4/5 and 6/7 resonance we get very similar patterns,
Fig. 9. The special choice of C' will be obvious from the results
of Sect. 5 (this C is close to Cp corresponding to the stationary
point). In the vicinity of the collision curve the formulation with
the averaged Hamiltonian is bound to fail as for close approaches
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Fig. 10. Comparison of four numerically calculated trajectories with
the level curves for the 5/6 resonance (the level curve does not fit the
trajectory close to the collision curve well)

of the particle to the Earth the approximation of the Earth mass
by the smeared ring must be inadequate. To illustrate the region
of applicability of the averaging approach we compared four
trajectories calculated numerically with the level curves of the
Hamiltonian, Fig. 10. For most of the time the particle is far
from the Earth and e is nearly constant. During conjunctions
there are abrupt changes in the eccentricity. In spife of these
kicks at conjunctions three curves fit the level of curves quite
well, only the effect of the Earth is smoothed over a longer time
period. The fourth trajectory copies the level curves only if they
are far from the collision curve. When it is brought with them
to the vicinity of the collision curve it can cross it freely, and its
behaviour differs from the guiding level curves. Figure 10 gives
a hint of how far from the collision curve is far enough in the
case of the Earth.

4.2. The truncated Laplacian expansion of the disturbing func-
tion

We tried 1o use the Laplacian expansion for the disturbing func-
tion by taking into account terms up to the fourth degree ine. Co-
efficients in this expansion were calculated using the method and
program described by Sidlichovsky (1991). For resonance 1/2
Beaugé (1993) used only the second-degree approximation and
found good agreement with the numerical averaging method.

0.26

025¢

023

0.22 ' - : : :
05 1 15 2 25 3
o

Fig. 11. Level curves calculated for the 5/6 resonance and C' = 0.9
with the Laplacian expansion truncated at the fourth degree ine

Figure 11 shows the level curves calculated by the truncaticn
method for the 5/6 resonance and C' = (1.9, We can see important
differences between Fig. 11 and Fig. 6. We did not find any
ALC with the averaging method but they are present in Fig, 11.
These differences must be caused by poor approximation of the
disturbing function with only the beginning of the series. In fact
it may be shown that the Laplacian series is absolutely divergent
in the region of interest. The Sundman (1916) criterion for the
absolute convergence of the Laplacian expansion for a > ay is

a1 F'(e1) < af(e), (15)
where

F(g) = /(1 +g*) coshw + g +sinhw

flg) = 1/ (1+g*) coshw — g — sinhw (16)
and

w = gcoshw, (7

see discussion by Ferraz-Mello (1993). Figure 12 shows the
boundary between the convergence and divergence region cal-
culated from the Sundman criterion with a; = 1 and e; = 0. For
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Laplacian expansion of the disturbing function for some of the planets

the 5/6 resonance where @ > 1.12 divergence occurs already for
e = (1.05 so that the ALC in Fig. 11 are clearly in the region of di-
vergence and the unsuitability of the averaging method is clear.
While discussing the convergence of the Laplacian expansion
it should be remembered that for the elliptical problem the con-
vergence is even worse. Fig 13 shows the boundaries between
the convergence and divergence regions for various planets of
the solar system. The differences are caused by their different
gccentricities.

5. Libration points in the problem with drag

Libration points for the 1/2, 2/3 and 1/3 commensurabilities
were studied by Beaugé & Ferraz-Mello. As resonances 4/5, 5/6
and 6/7 seem to be more efficient for the Earth we will study the
fibration points for these resonances in the planar circular prob-
lem. For each C, o, e we can determine the averaged disturbing
function .%2(C, e, o) and its partial derivatives numerically. Li-
bration points are points where C, e, ¢ are constant. Equations

Fig. 14. The dependence of the resonant argument oo on & for the 4/5
resonance
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Fig. 15. The dependence of the resonant argument o on 3 for the 5/6
resonance
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If the rh.s. of Eq. (18) are zero, we have three equations in
three variables C, e, o. These equations may be shown to be

equivalent to Eq. (14) in Beaugé & Ferraz-Mello (1993b). The
first equation

(P)=2(P) (19)
q

deterrnines the “‘universal eccentricity” ey (see Beaugé &
Ferraz-Mello 1993b). The value of eq is independent of 3 and for
theresonances in Fig. 4 itis given in Table 1. It is the eccentricity
of exact resonance, where a and ¢ are constant. Qur numerical

experiments showed that whenever the particle is captured (its
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Fig. 16. The dependence of the resonant argument o on 3 for the 6/7
resonance

Table 1. The universal eccentricity ep, resonant semimajor axes ag and
corresponding perihelion and aphelion distances g, . The last three
columns were calculated for 5 =0.01

(r+a)/q eo ag q Q
45 0273610 1.1565 0.8401 1.4730
5/6 0247226  1.1255 0.8472  1.4037
6/7 0227254 1.1045 0.8535 1.3555
78 0211455 1.0894 0.8591 1.3198
89 0.198552 1.0781 0.8640 1.2921

910 0.187756 1.0692 0.8684 12699
10/11  0.178549 1.0620 0.8724 12517
1712 0.170577 1.0562 08760 1.2363
12/13  0.163585 1.0513 0.8793 1.2233
13/14  0.157389 1.0471 0.8823 1.2119

a is no more decreasing) its eccentricity starts to increase to the
value ez. Employing Eq. (19) we can write the remaining two
equations for the libration points in the form

a.92 Qn 2, 4
puliabeays =2 Zef — 20
do Fa) 73 (1+3€ 7) @0
and
2

P Py p e 0.72

~)l=-n-—-— —— ) =) =0 21
(1+Q> "q BL(]+q1+’Y>(8€) @D

We propose to solve these two equations iteratively. First we
put n = (g + p)/p which is the solution of Eq. (21) for 92 = 0.
With this » and e = gy we can determine C from Eq.(12). We
evaluate the r.h.s. of Eq. (20) and determine ¢ using the program
for calculating .2 and its partial derivatives. Then we improve
the value of n using Eq. (21) with ¢ obtained in the previous
step. We could continue by improving ¢ from Eq. (20), but this
was not necessary as the last correction to @ was already of the
order of 10~ or smaller. The procedure converges very fast to
the libration point ey, Cp and oy.

M. Sidlichovsky & D. Nesvorny: Temporary capture of grains in exterior resonances with the Earth

Using this iterative procedure we calculated the dependence
of oy on g for the 4/5, 5/6 and 6/7 resonances, shown in Figs.
14-16. These figures clearly show that for & close to 0.1 and
larger the libration point is too close to the collision curve, and
the experience from Fig. 10 indicates that one cannot expect
capture in the vicinity of this libration point.

Let us go back to Figs. 1-3. We can now explain many of
their features. For # = 0.01 and the 5/6 resonance we have
libration point g = 0.2472, Cy = 0.8633, g = 3.5039 with
corresponding ag = 1.1255. Values a, e and C' in Figs. 1-2 cer-
tainly approach these values. Resonant angle o oscillates around
a value close to ap. The amplitude of these oscillations, however,
grows, indicating the instability of the libration point. Indeed,
we performed the numerical linearization of Eqs. (18) around
the libration point for 4 = 0.01 and we solved the cubic equation
for the eigenvalues of the corresponding matrix, obtaining one
real negative root and two complex conjugate roots with a pos-
itive real part. The small oscillations around the libration point
must grow exponentially with time and no permanent capture
very close to the libration point may be expected.

Substantial contribution to the problem of resonance trap-
ping was made recently by Weidenschilling & Jackson (1993),
who obtained some criteria for trapping of grains in exterior
resonances and maximum eccentricities em,, Which the eccen-
tricity of captured particles approaches (eg, depends on the
resonance). Their value of e, is always higher than our e
but the difference is small ranging from 0.010 to 0.014. Wei-
denschilling & Jackson’s (1993) approach consists in trunca-
tion of the rescnant part of the perturbing function to the first
degree in eccentricity and averaging is made by omitting the
nog-resonant terms, Their approach is, therefore, valid enly for
small eccentricities. Very nice formula for increase of captured

particle eccentricity (which approaches e, exponentially) is
given. However, for e close (0 ey, the disturbing function as se-
ries in e diverges (see Fig. 12) and the applicability of truncated
disturbing function is questionable. It was for instance shown
that for higher eccentricities this approach is unable to repro-
duce families I, and /I of periodic orbits in the three body
problem (Hadjidemetrion 1993). We made numerical averag-
ing of disturbing function so that pur results are not restricted to
small eccentricities. Neither our eg nor their e, depend on dis-
turbing function or its coefficients. That is why the differences
between them are not very large even if the series for the dis-
turbing function diverges. Our Eq. (19) was obtained and solved
for ey without any restrictions to lower powers of eccentricity.
That is why e, tmust be considered as approximation of more
exact value eg.

6. Discussion and conclusions

We have studied a simplified planar circular problem of a dust
particle motion in the gravitational field of the Sun and one
planet (the Earth). The radiation forces were included. We found
two libration points for each of the resonances 4/3, 5/6 and
7/8 and for each 3 (Figs. 14-16). As the PR drag leads to a
decreasing semimajor axis ¢ and eccentricity e, we assumed
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Fig. 17, Three particles are captured in the 4/5, 5/6 and 6/7 resonances with Earth in the general model

for simplicity that the orbit was circularized before the particle
approaches resonant ¢. Numerical simulation showed that if the
particle is placed close to the outer edge of the resonance in a
circular orbit, it can be temporarily captured when crossing the
resonant @. The capture probability depends on 5 and on the
resonance. For 3 = 0.01 there is distinct difference between the
4/5 and 5/6 resonance as all 36 test particles crossed the former
and all 36 particles were captured in the latter resonance. This
well-defined boundary shifts to lower degree resonances with
decreasing 3, and vice versa.

In practice the eccentricity of the particle (even if initially
e = () will increase slightly (to values e smaller than (.05) when
crossing the outer resonances 1/2, 2/3, 3/4. This nonvanishing
eccentricity will change the pattern and some particles may be
captured even in the 4/5 resonance (for 3 = 0.01), some in the
5/6, etc. (see Sect. 2).

Our previous investigations were based on the simple pla-
nar and circular model. We included all planets in our numerical
integration in order to show that resonance trapping is areal phe-
nomenon in the solar system. Since we are mainly concerned in
near-Earth resonances we chose particles with initial semimajor
axis a = 1.37 AU. The set of more than one hundred particles
8 =0.01 with 0 < e < 0.15 and inclinations 1 < 10° were
released in various angular positions along the initial ellipse.

Figure 17 shows the capture of three particles in different
resonances. The particle released with e = 0.03 was captured
at ~ 1.156 AU into 4/5, the particle relased with e = 0.04
was captured into the middle 5/6 resonance, and the one with
e = (.05 was captured at ~ 1.104 AU in 6/7. One can see
on eccentricity evolution jumps due to 2/3 and 3/4 passing and
the typical boost in the capture. The behaviour is gualitatively
similar to that observed in the simple model and predicted by
analytical treatment.

But capture times are much shorter. They are usually of the
order of 1000 y although several captures with times > 15000
y occurred. And several other things are worth mentioning. The
integration confirmed the inefficiency of low-order resonances.
‘We did not observe the 2/3 capture, and the 3/4 capture was rare.
The particles with e > 0.08 are not usually captured or they are

captured for a very short time, then released and finally trans-
ferred inside the Earth’s orbit. On the other hand, almost every
particle with lower eccentricity was captured and spent several
thousand years in resonance. The last thing to be mentioned here
is that the initial angular positions were found to be unimportant
for the particles fate, i. e. particles in different positions on the
initial ellipse behave similarly, all of them are either trapped
into some resonance or passed through. The full problem with
all planets was thus found more complicated (the effect of tem-
porary capture is still there) and the circular problem is just first
step to its understanding.

If there is significant component of low eccentricity parti-
cles at low inclinations the effect of temporary capture (of order
10* — 103 years for the circular and 10° years for full prob-
Jlem) might lead to the density distribution peak in the region
1.06 < a < 1.15. Interplanetary dust can originate in comets,
collisions in the asteroid belt, or interstellar clouds or can be
remnants of the early solar nebula (Weinberg & Sparrow 1992).
As cometary particles come to the Earth’s vicinity usually with
quite high eccentricity (Jackson & Zook 1992) the temporar-
ily captured particles come most probably from collisions in
asteroid belt. The Infrared Astronomical Satellite (IRAS) dis-
covered at feast three parallel bands of dust roughly straddling
the plane of ecliptic, see more detailed discussion by Sykes et
al. (1989). The central bend was later separated into two pairs of
bands o and /3 still between +3.5° of ecliptic latitude. Two the-
ories of origin of the dust bands were suggested. The collisicnal
equilibrium theory assumes that the dust population at a given
location is related to the population of observable asteroids at
the same location. For nonequilibrium (random collision) hy-
pothesis dust bands are products of stochastic process in which
they are created and destroyed over geologic time. Both theories
can explain « and 3 bends and their relationships to Themis and
Koronis families (Sykes at al. 1989). Due to PR drag the orbits
of particles in & and / bands have to decay. To obtain a rough
estimate of their eccentricity when the Earth orbit is passed we
use an integral found by Wyatt & Whipple

K =a(l —ede 5. (22)
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Using e and a for Themis and Kronis we get K = 15.17 AU
{Themis) and K = 30.67 AU (Koronis). When the semimajor
axis of the particle approaches @ = | AU we can approximate
corresponding eccentricity

e=K1, (23)
yielding e ~ (.03 for Themis and e ~ 0.013 for Koronis. This
example shows that the & and 3 bands which are permanent
features in the collisional equilibrium theory could supply the
low eccentricity and low inclination particles as eccentricity is
reduced during the orbital evolution.

Example of Themis shows that the eccentricity of the parent
body may be as large as 0.13 and the eccentricity of particle in
the Earth’s vicinity is reduced to 0.03. These arguments widen
the set of asteroid eligible as sources for low eccentricity parti-
cles which may be temporarily captured at the Earth’s exterior
resonances (and contribute to formation of peak) as described
above.

Due to the S-dependence of resonant a one cannot expect
individual sharp peaks for the individual resonances. On the
other hand, e is independent of 7 and clear individual peaks at
values given by Table 1 in the eccentricity distribution should
be formed. This approach gives at least a qualitative predicticn
of the fine structure of the grain distribution in the vicinity of
the Earth’s orbit. For any quantitative prediction we need to
know the distribution (in eccentricity, inclination, 3) of grains
incoming from outer space to the Earth’s vicinity.

Acknowledgements. We thank an anonymous referge for his construc-
tive criticism.

References

Beaugé C., 1993, Celest. Mech, & Dynam. Astron. in press

Beaugé C., Ferraz-Mello S., 199343, Icarus 103, 301

Beaugé C., Ferraz-Mello S.,1993b, Icarus in press

Burns J. A., Lamy P. L., Soter S., 1979, Icarus 40,1

Ferraz-Mello 8., 1993, submitted to Celest. Mech. & Dynam. Astron.

Ferraz-Mello S., Tsuchida M., Klafke I. C., 1993, Celest. Mech. &
Dynam. Astron. 55, 25

Gonzi R., Froeschle Ch., Froeschle Cl., 1982, Icarus 51, 633

Hadjidemetriou J. D.. 1993, Celest. Mech. & Dynam. Astron. 56, 201

Jackson A, A., Zook H. A., 1992, Icarus 97, 70

Message P. 1., 1958, AJ 63, 443

Quinlan G. D)., Tremaine S., 1990, AJ 100, 1694

Sicardy B., Beaugé C., Ferraz-Mello 8., Lazzaro D., Roques F,, 1994,
Celest. Mech. 57, In press

gidlichovsk}" M., 1991, Bull. Astron. Inst. Czechosl. 42, 116

Sundman K., 1916, Ofversigt at Finska Vetenskaps-Societetens
Farhandlingar. 58A(24), 1

Sykes M. V., Greenberg R., Dermott S. F, Nicholson P. D., Burns J.
A., 1989, Dust Bands in the Asteroid Belt, in Asteroids II, (eds. R.
P Binzel, T. Gehrels, M. S. Matthews) p. 330, the Univ. of Arizona
Press !

Weidenschilling S. J., Davis D. R., 1985, Icarus 62, 16

Weidenschilling S. J., Jackson A. A., 1993, [carus 104, 244

M. Sidlichovsk§ & D. Nesvorny: Temporary capture of grains in exterior resonances with the Earth

Weinberg 1. L., Sparrow I. G., 1992 in Cosmic Dust, ed. J. A. M.
McDonnell, p. 75, John Willey &Sons, Chichester—New York—
Brisbane-Toronto

Wyat §. P, Whipple F. L., 1950, ApJ 111, 134

This article was processed by the author using Springer-Verlag I&TX
A&A style file version 3.

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1994A%26A...289..972S&db_key=AST

