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ABSTRACT

The currently favored theory of lunar origin is the giant-impact hypothesis.
Recent work that has modeled accretional growth in impact-generated disks
(Ida, Canup and Stewart 1997) has found that systems with one or two large
moons and external debris are common outcomes. In this paper we investigate
the evolution of terrestrial multiple moon systems as they evolve due to mutual
interactions (including mean-motion resonances) and tidal interaction with the
Earth, using both analytical techniques and numerical integrations. We find
that multiple moon configurations which form from impact-generated disks are
typically unstable: these systems will likely evolve into a single moon state as

the moons mutually collide or as the inner moonlet crashes into the Earth.

Subject headings: planets and satellites: general — planets and satellites:

individual — solar system: formation — Moon
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1. INTRODUCTION

The “Giant-Impact” scenario proposes that the impact of a Mars-sized body with early
Earth ejects enough material into Earth orbit to form the Moon (Hartmann and Davis
1975, Cameron and Ward 1976). Of all lunar origin theories, the giant-impact theory seems
best able to account for the geochemical, geophysical and dynamical characteristics of
the Earth/Moon system. Published works have utilized smoothed-particle hydrodynamics
to model the impact event and the creation of an impact-generated protolunar disk (e.g.
Cameron and Benz 1991 and Cameron 1997). These works predict the formation of an
extremely hot debris disk with a mean radius near or interior to the classical Roche limit
for lunar density materials (~ 2.9Rg) and an outer disk edge of ~ 20Rg. To date, few
works have addressed the earliest evolution of this disk, which may have experienced
instability-enhanced viscous spreading prior to cooling and solidification (Ward and

Cameron 1978 and Thompson and Stevenson 1989).

The mid-phase of disk evolution—when material has cooled and settled enough to allow
for collisional growth—has been studied in Canup and Esposito (1996, hereafter CE96) and
most recently in Ida et al. (1997, hereafter ICS97). The latter presented the first N-body
simulations of accretion in a protolunar disk using a Hermite-scheme integrator to follow
the orbital and collisional evolution of between 1000 and 2700 particles. ICS97 included
tidal inhibition of accretional growth near the Roche limit by implementing the Canup
and Esposito (1995) tidal accretion criteria, which basically require that a colliding pair of
objects 1) not physically overflow their mutual Hill sphere and 2) rebound with a velocity
less than a three-body escape velocity in order for accretion to occur. ICS97 varied initial
disk masses and radial surface density profiles, as well as assumed values for the coefficient
of restitution. Initial particle radii ranged from 38 to 380 kilometers, and most runs

assumed a differential mass power-law index of ¢, = 1.5 for the starting size distribution.
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ICS97 found that the largest moonlet which accretes from the disk forms at a characteristic
distance of between 1.2 — 1.5 times the Roche radius (at the outer edge of the Roche zone)
in about one year (or about 1000 orbits). This result was relatively independent of initial
disk conditions and collisional parameterizations. Perturbations by the largest moonlet(s)
were very effective at clearing-out inner disk material-in all of the ICS97 simulations, the
smaller debris within the Roche zone was scattered either into the Earth or into a collisional

orbit with the largest moonlet(s).

Two-thirds of the ICS97 runs end with a single large moonlet at 1.2 — 1.5agoche

(3.5 — 4.3Rg), together with multiple smaller bodies in exterior orbits. One-third of their
simulations, typically those which began with the most radially-extended disks, yielded
systems with two large moonlets (i.e., with m9>0.3m,). At the end of these cases, the more
massive moonlet had an orbital radius of a ~ .8 t0 2ageche (2.32 — 5.8 Rg). Figures 1 and 2
show example results from ICS97 for the one and two-moon cases. Resulting inclinations
of the largest moonlet(s) were always low, while typical eccentricities were 0.1 for the
one-moon cases and higher for two-moon cases (~ 0.09 — 0.4). The ICS97 integrations did

not include orbital evolution due to tidal interaction with the Earth.

This paper seeks to address a likely final stage of evolution in an impact-generated
protolunar-disk: the tidal evolution of and mutual interactions between multiple bodies
which have formed via accretion. Would a multiple moon system persist as it orbitally
evolves? The dependence of the rate of orbital evolution on moonlet mass suggests that if
the innermost moon is the most massive it will likely overtake and sweep-up all exterior
material (Cameron and Benz 1981, CE96). However, trapping of outer material in exterior
mean-motion resonances could preclude mutual collisions even in this case. Furthermore,
cases in both CE96 and ICS97 yield systems of multiple moons in which the innermost

moonlet is often not the most massive (e.g. Figure 2).
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In this work we utilize both analytic techniques and numerical integrations to
characterize probable modes of evolution for a terrestrial multiple moonlet system. The
combination of these complementary approaches is very helpful, as the theoretical analysis
allows for straightforward categorizations of general outcomes for certain idealized cases
(e.g. single, isolated resonances), while the numerical integrations reveal the complexities of
the full N-body dynamics. The analytic methods and our numerical model are described in
Sections II and III respectively. Our results are discussed in Section IV, and our conclusions

are summarized in Section V.

2. ANALYTIC MODELING

Below we review the analytic modeling which we will utilize in conjunction with our
numerical integrations to describe the evolution of a multiple moon terrestrial system. We
benefit from the great amount of past work which has addressed the stability and evolution
of the satellite systems of the outer planets (e.g. Greenberg 1977, Dermott et al. 1988,
Tittemore and Wisdom 1988, 1989, 1990). A terrestrial multiple moon system differs
dynamically from these systems in three key respects: a much larger mass ratio of satellites
to central planet, a substantially faster rate of tidal evolution, and the significant effect of
tides raised on the Earth on increasing satellite eccentricities. All of these factors help to
explain our single Moon system. We note that here we assume satellites occupy co-planar

orbits in the Earth’s equatorial plane.
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2.1. Tidal Evolution of Moonlets
2.1.1. Terrestrial Tides

For orbits outside synchronous orbit (typically 2.3Rg immediately after the impact
event), tides raised on the Earth by an orbiting satellite lead to a transfer of angular
momentum from the Earth’s rotation to the satellite’s orbit, causing an increase in orbital
radius. CE96 used a simple model of tidal evolution in order to predict when two moons
would likely evolve into potentially collisional orbits, considering only the evolution of

orbital radius due to the M, principal tides raised on the Earth:

. ~ 3kay 1\/%1%‘;’3ma_11/2 sin(26) (1)

where k, is the Earth’s second order Love number, Mg and Rg are the mass and radius

da

dt

of the Earth, m and a are the mass and orbital radius of the orbiting body, and ¢ is the
lag angle between the bulge raised on the Earth and point below the disturbing body (e.g.
Burns 1986). Tides raised on the Earth also cause an evolution in eccentricity for initially

non-circular orbits, with:

de 19e da

—| &~ — 2

where 0 = (2w — 3n), w is the angular rotation rate of the Earth, n is the satellite’s mean

motion, and o is positive for a2 1.3asy,. (Kaula 1964; Goldreich and Soter 1966).

Integrating Eq. (1), CE96 determined when two bodies would tidally evolve into
unstable orbits with da < 3.5Ry;y; (e.g. Gladman 1993), where Ry is the mutual Hill
radius of the interacting bodies (Rgqy; = a(%;??)l/?)). They found that the dynamical

separation between two tidally evolving moonlets, da/a, asymptotes to a value which is just

a function of the mass ratio of the moonlets:

5 2/13
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where m; and ms are the masses of the inner and outer moonlets and da/a = (as — a1)/as.
The critical relation which determines whether two moonlets will converge or diverge to

this asymptotic value is a function of just their masses and initial positions:

a 13/2

1

= (=) 3b
crit ((1,2) ( )

where a; and ay are the moonlet orbital radii and a; < ay. For (my/msy) greater than this

my

mgo

value, the moonlet orbits converge. For systems with (my + mg) = .1 — 1 Myyner, 8 mass
ratio (my/ms)>0.06 — 0.22 is required for the asymptotic separation value to be < 3.5Rg;y,
or in order for two moonlets to evolve into potentially collisional orbits. While their analysis
included only tidal effects on orbital radius and used a very symplistic stability criterion,

the expressions in Eq. (3a-b) will be useful in our expanded treatment here.

2.1.2. Satellite Tides

In addition to the effects of terrestrial tides, an orbiting body will also be affected by
tides raised by the Earth on the satellite. Tides raised on a synchronously rotating satellite
(i.e. with n = w, where w; is the rotation rate of the satellite) in a circular orbit will form
in line with the centers of the satellite and the Earth, and so will not yield any torque.
However, for non-circular orbits the satellite tides dissipate energy as their magnitude
varies from perigee to apogee and as the satellite bulge position is alternately ahead of and
behind the line of centers. Both the radial “push-pull” tides and the “wobble” tides tend to
circularize satellite orbits, competing with the effects of planetary tides for orbits outside

co-rotation (e.g. Burns 1986).

From Kaula (1964) and Goldreich and Soter (1966), the rate of change of eccentricity

due to both Earth and satellite tides (assuming all tidal components have the same lag



angle) is:
de
dt

28

sgn(o) - 35

N 19e da

N — A
ol I, (4)

where %|¢ is given in Eq. (1), 0 = (2w — 3n), and A is defined as

1= () () ®

the ratio of satellite-to-planet effects used in Mignard (1980, 1981; see also Kaula 1964

and Burns 1986), where the starred quantities are those of the satellite. For the current
Earth-Moon system, (k2/Q)mwnar = 0.0011, (k2/Q)q ~ 0.021, and so A ~ 0.5 (Burns 1986,
Dickey et al. 1994). A range of A values from 0 to 20 is used to represent the range of
plausible values during the Moon’s evolutionary history; the former corresponds to no
satellite dissipation while the latter corresponds to the limit when only solid body tides in
the Earth contribute to terrestrial dissipation (Qg ~ 300). The value of Qg has certainly
changed over the course of the Moon’s history, as its current value implies that the Moon

achieved its present position after only about 2 billion years (see Burns 1986).

2.2. Mean-Motion Resonances Between Moonlets

As moonlets orbitally evolve due to tides they will pass through mutual mean-motion
resonances. In theory, passage through resonance could either increase or decrease the
stability of a multiple satellite system relative to that predicted from only relative rates of
tidal evolution. For instance, the satellite systems of the outer planets exhibit an unusually
high number of long lived locked resonant configurations (e.g. Goldreich 1965). Passage
through resonances is typically modeled by treating tidal effects as a slow, adiabatic
evolution of semi-major axis which affects a single-resonance Hamiltonian (e.g. Henrard
and Lemaitre (1983), Borderies and Goldreich (1984), Peale (1986) and Malhotra (1994)).

The evolution of the system during passage through or capture into an isolated resonance
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can then be described by means of the adiabatic theorem. In this work we investigate the
effects of mean-motion eccentricity resonances, but note that other classes of resonances

(e.g. secular or inclination resonances) may also be important.

A mean-motion resonance occurs when the ratio of the mean motions of two bodies
is nearly a ratio of integers, e.g. for the (p + ¢q) : p resonance, ny/ny =~ (p + ¢q)/p where n
is mean motion and ¢ is the order of the resonance. During a mean-motion eccentricity
resonance, the gravitational interaction between the two bodies acts to maintain their
conjunction at a certain longitude relative to the apse of one or both of the bodies. This

process causes the critical argument of the resonance, ¢, to librate about a fixed angle.

For every mean-motion commensurability there are several states which are
each defined by their own critical argument, which for co-planar orbits is just:
¢ =—pA + (p+ @Ay — 101 — @209, where A; and Ay are the mean longitudes of the inner
and outer body, @, and @9 are the longitudes of pericenter of the inner and outer bodies,
and ¢; and ¢ are integers with (g1 + ¢2) = ¢ (see Malhotra 1994). For first and second
order resonances between co-planar bodies, there are 3 primary resonance states for a given
(p + q) : p commensurability to second order in eccentricity, and in general, the relative
masses and eccentricities of the two bodies determine which state is occupied. For the
2:1 resonance, the “e;” state is characterized by ¢., = —A; + 2Xy — @y, the “e;” state by
Ge, = —A1 + 2)y — W, and the second-order 4:2-e;e9 state by @e,e, = —2A1 + 49 — 01 — Wo.
For the 2 : 1 commensurability and low eccentricities, the e; state is associated with
ms >> my (an interior resonance), while the es state (exterior resonance) is associated with

my >> My.

Standard theories for evolution through resonance assume that the primary states
of a given commensurability are “well separated”, or that the variation of semi-major

axis that results from the resonance interaction (the libration width) is small compared
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to the radial separation of neighboring resonance states (e.g. Dermott et al. 1988). The
separation of the primary states of a commensurability occurs mainly due to differences
in precession rates associated with the oblateness of the primary. The libration width of
a given state depends both on the mass ratio of the secondary to the primary, and on
e?. When the secondary-to-primary mass ratio is small and .J; is large, even low-order
resonances are well-separated (Dermott et al. 1988). However, when Jy is small this is
not necessarily the case. In a group of three papers, Tittemore and Wisdom (1988, 1989,
and 1990) demonstrated that single-resonance theory was inadequate to describe passage
through and capture in resonances in the Uranian system, where J5 is small. In particular,
they identified significant chaotic zones surrounding low-order resonances, and found that
escape from resonance could occur even after long periods of stability and in cases where
single-resonance theory would predict permanent capture. In our analytic analysis here
we have utilized the single-resonance theory, which is conservative in that it will tend
to overestimate stability. Even given this approach, we find all likely initial moonlet

configurations to be unstable.

2.3. Capture into Resonance

When two moonlets orbitally evolve through an isolated mean-motion resonance, the
outcome is dependent upon whether their orbits are converging or diverging (i.e. whether
£ (6a/a) due to tides is negative or positive). Resonant perturbations tend to increase the
orbital separation between the resonant bodies. If the orbits of two bodies are diverging
as they tidally evolve, both resonant and tidal effects are additive and resonance trapping
does not occur (e.g. Weidenschilling and Davis 1985). In this case, passage through
the resonance results in a jump in eccentricity whose magnitude may be estimated from

adiabatic analysis (see Dermott et al. 1988 or Peale 1986).
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For tidally converging orbits, a resonant configuration can be maintained under certain
conditions. First, the rate of tidal evolution must be slow enough so that the change in a
due to tides in one libration period of the resonance is much less than the amplitude of
the resonant perturbation of a—this is the “adiabatic criterion” (see Dermott et al. 1988,
Malhotra 1993). For tidal evolution rates which greatly exceed this limit, passage through
resonance without capture occurs. With Qg 210, the adiabatic condition is met for the first
and second order resonances (¢ = 1, 2) considered here. If the adiabatic criterion is satisfied,
capture into an isolated resonance is certain if eccentricity values far away from resonance
are below a critical value. For initial eccentricites higher than this value, capture into
resonance is probabilistic. The value of the critical eccentricity depends on the resonance,
the masses of the two bodies, and their orbital radii; exact expressions for this e..; for first
and second order resonances are found in Dermott et al. (1988, Appendix B; also Peale
1986 and Borderies and Goldreich 1984 ). For example, e..; for capture into a first order

interior resonance is:

(6)

1/3
o (_2VBma/Mg)af(a) \"
TR+ D)2 /my)a?)
where o = ay/a2 and f(«) is a function of Laplace coefficients (Brouwer and Clemence
1961, pp. 490-494; also see Weidenschilling and Davis (1985) for ¢ = 1 values: their

C(a) = 2f(a)). Capture probability decreases with increasing e for e > €.

Thus we can 1) utilize the CE96 criterion for convergence/divergence to determine
what mass ratio moonlets may get captured into a given resonance and 2) estimate critical
eccentricities for capture into resonance for the convergent cases. Figure 3 is a plot of the
asymptotic (aq/as) value due to tidal evolution as a function of moonlet mass ratio; also
shown are the locations of first and second order mean-motion resonances. Stable capture
into resonance is impossible in the phase space above the solid curve, since here orbits
are diverging to their asymptotic tidal separation. Below the solid curve orbits are tidally

converging, and capture is certain if e < e.; and probabilistic otherwise. Also shown is
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the critical (a1/a9) ratio for two-body stability (da < 3.5Rpy) for (m1 + ma) = Miunar-
Because of the large mass ratio of the Moon to the Earth, the only first and second order
commensurabilities which lie outside the two-body stability separation for bodies which total

a lunar mass are the 2:1, 4:2 and the 3:1.

2.4. Evolution in Resonance

The evolution of tidally evolving bodies once captured in resonance has been modeled
by multiple past works (e.g. Peale 1986, Dermott et al. 1988, Pauwels 1994). We have
specifically compared our numerical results to the analytical predictions from both Pauwels
(1994) and Dermott et al. (1988). Here we follow the approach used in the latter work, as

it easily allows for the inclusion of effects due to both terrestrial and satellite tides.

From Dermott et al. (1988), the averaged rates of change of eccentricity due to the
resonant interaction between two tidally evolving bodies trapped in an isolated mean-motion

resonance (with ¢ = —pA; + (p 4+ @) A2 — (1 &1 — Goln), are:

d€1 —\/ 1-— 6% meo F [ T (1 1 2)] (7)
— ) = nia — — —e
dat /| e 1 lMea 39 qgiTp 1
d€2 —/1- 6% mq F
— ) = — g — 1—4/1— €2 ]
()] =t - G+ a0 - 1= ®)
The function g is just
Gm Gm Gm asm
9= +p+9*—5 ~p° 22[1+ : 1]- 9)
aj a3 aj ai1ms
The expression for F' is
F =piy;— (p+q)nay, (10)

where 71 ; and 79, are the rates of change of the mean motions of the inner and outer

satellites due to tides. For tidally converging orbits (necessary for capture into resonance in
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the first place), F is negative and is dominated by the first term (e.g. for a;/as ~ 0.5 the
first term is an order of magnitude larger than the second term for m;/m,>0.1). The rate

of change in n; due to tides is just

a1

-
e = -2 (%), (1)

where a,; is the rate of change of a; due to all tidal effects.

The @+ rate in Eq. (11) contains contributions due to both planetary and satellite

tides. Assuming tides in the satellite dissipate energy while conserving angular momentum,

da1 . 20,1 €1 d€1

| = T 12
dt |s (1—e?) dt |y (12)

where de; /dt|s is the rate of change of eccentricity of the inner satellite due to tides raised

on the satellite, so that the total rate of change of a; due to both satellite and Earth tides

is given by
da1
dt

. da1

7e2 A
T E ) (13)

Nrl!

The total rate of change of the eccentricity of a satellite in a mean-motion resonance
is a combination of the effects due to the resonance (Egs. (7)-(8)) and those due to tides
raised on both the Earth and the satellite (Eq. (4)). These analytic evolution rates are
compared to our numerical results described below. For sufficiently high values of satellite
dissipation (i.e. high A values), an equilibrium eccentricity is reached. For my/m3>0.1 and
F ~ pny 4, the equilibrium eccentricities to lowest order in e can be solved for explicity and

are given by:

9 (731 19sgn (o) aomy 73 ] -
=—|[(TA——)(1 TA— 14
=20 EO+ ) s At (14

where 0 = (2w — 3n), and

€2, = %(ﬁf (ﬁ)s (1 - 7eiqu) [(7A . 195%111(0))(1 + 22 )] - (15)

mso aq a1mso
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Eq. (14) is equivalent to Tittemore and Wisdom (1990) Eq. (53), except in that case they
did not include the effect of planetary tides on satellite eccentricity, as this is unimportant
for satellites orbiting gaseous planets with high @) values. For m; > my (exterior resonance
case), the first term in g can be neglected and the equilibrium eccentricity of the outer body
can again be explicity solved for to lowest order in e:
9 ep  (m) (e’ 9 19sgn (o)1
€5 0q = b+ ar (E) (a_1> (1 ="TetA) [7A - - (16)

Note that the equilibrium eccentricities depend only on moonlet mass ratio, the type of

resonance, and the A value.

Thus from analytic methods we can determine which mutual mean-motion resonances
moonlets can become captured in (and with what capture probability for e > e..) as
they orbitally evolve due to both planetary and satellite tides. Given that capture into
an isolated resonance occurs, we can then estimate the subsequent evolution of moonlet
eccentricities (due to both tides and the resonant interaction) from the rates given in Egs.
(4), (7) and (8). Despite the simplifying assumptions inherent to these methods, they

provide a clarifying structure in which to categorize the numerical results.

3. NUMERICAL ANALYSIS

To simulate the evolution of multiple moonlet systems we utilize a code developed
as part of the SWIFT group of integrators which uses the mixed variable symplectic
(MVS) orbit integrator developed in Wisdom and Holman (1991) (see also Levison and
Duncan 1994). This symplectic technique by its N-body nature implicitly accounts for the
effects of mutual interactions, including resonances. For this work, the orbiting satellites
are additionally accelerated by tides raised on the Earth at each time step (see Touma

and Wisdom 1994). Accelerations due to tides raised on the orbiting satellites are not
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included in our numerical simulations, due to difficulties in incorporating the evolution of
satellite rotation in our symplectic method. In particular, tracking of the moonlet spin
rates is necessary for the proper treatment of the “wobble” component of the satellite tides,

especially in the case of very eccentric orbits.

3.1. Tidal Accelerations

The tidal-generating force of a satellite in Earth orbit causes the Earth to assume a
distorted shape relative to the sub and anti-satellite points, which can be mathematically
described in terms of an increase in the second-order harmonic of the Earth’s gravitational
potential. As a result of dissipation within the Earth, the bulge achieves a maximum
height some time At after the tide raising impulse from the satellite. For a satellite outside
geosynchronous orbit, the tidal bulges will lead ahead of the line through the satellite-Earth
centers by an angle ¢ which is a function of At: § = (w — n)At. While the tidal potential
is often derived by assuming a constant lag angle, for our numerical integrations we follow
the formalisms used by Mignard (1979, 1980, and 1981), Conway (1982), and Touma and
Wisdom (1994) which instead assume a constant value for At, the characteristic time for
bulge formation. This approach is preferred since the value of the lag angle § is not constant

for eccentric orbits and is of course a function of position relative to synchronous orbit.

The potential at a geocentric distance 7 due to the tidal distortion of the Earth raised

by a satellite of mass m is just

GkaRS RN
WB(T . rp)2 — 7‘27°I2)] (17)

u(r) =

where 7, was the position of the tide-raising body when the tide-raising impulse occurred
at time (¢ — At) (Conway 1982, Touma and Wisdom 1994). In order to determine the

acceleration of the satellite by the bulge it has raised, one must determine the potential
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at the satellite’s new position at the time the bulge forms, 7, where 7, = 7, — 7 AL
Substituting this expression for 7, into Eq. (17), expanding to first order in At, and taking

the gradient of U(7) yields the acceleration:

—3koGmRS .

7= 10 EAL27(7 - ¥) + r?(7 x & + )], (18)

where 7 is now the position of the satellite, and we have assumed that ¥ = 7, or that the
object being accelerated is the same as the one which generated the tidal distortion (e.g.
Conway 1982; Touma and Wisdom 1994). For multiple satellite systems, it is customarily
assumed that each body is only affected by the tidal bulges it itself has raised on the central
planet. This is because a satellite’s own tidal bulges maintain a fixed position relative to
the satellite, while bulges raised by other satellites would not and their changing relative

orientations would tend to cause their effects to cancel out.t

We incorporate the tidal acceleration into our integrations at each time step
(AY = ﬁi:ieststep) by adding it to the interaction part of the MVS Hamiltonian (see
Wisdom and Holman 1991). The tidal time delay for the Earth (we typically use the
current value of At ~ 12 minutes), and the initial rotation rate of the Earth (w) are
input parameters for each run. The oblateness of the Earth is determined as a function
of w, with J, = 1.08 x 1073 (WW)Q. By using Eq. (18) directly in our numerical

simulations, we avoid the complications of an elliptic element-based approach in which

tidal effects are determined on a tide-by-tide basis. Our integrations thus account for all

'We note that this may not be a valid assumption in the case of two satellites in a
mean-motion resonance. In this case each satellite would experience a periodic interaction
with the tidal bulge of the other satellite during their mutual conjunction, and this “tidal
resonance” could result in an additional acceleration to both bodies (Craig Agnor, personal

communication). We ignore such interactions here.
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effects of a second-order (I = 2)? tidal distortion in the Earth’s potential, as well as the .J,
harmonic due to rotational oblateness. Our [ = 2 tidal acceleration expression is valid for

any eccentricity or inclination.

As mentioned above, we do not include the effects of tides raised on the moonlets in
our numerical integrations. Instead, the effects of satellite tides for various A values are
estimated using the analytic methods described in Section II. We also ignore the effects of
solar tides. Presently the torque on the Earth due to solar tides is one-fifth that of the lunar
torque, and the relative importance of solar tides is even less for the much closer satellite

orbits which we are concerned with here (Burns 1986, Mignard 1981).

4. RESULTS

We categorize our findings in terms of the relative moonlet masses, presenting both
numerical and analytical results for each class. Unless otherwise stated, the numerical
integrations assume a rotation rate of 5 hours, a terrestrial tidal time delay equal to its
current value of At ~ 11.54 minutes, A = 0, and initially co-planar moonlet orbits. In most
cases, the integrations were continued until the moonlets experienced a close encounter or

one of the moons collided with the Earth. As before, our notation assumes a; < as.

2The | = 3 order terms decrease more rapidly with orbital radius than the | = 2 terms;
even at the Roche radius for silicate densities (a = 3Rg) the force due to the [ = 2 distortion

is a factor of ~ 5 greater than that due to the [ = 3 terms (e.g. Mignard 1980).
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4.1. Moonlets with m; > ms

This configuration is predicted by about two-thirds of the ICS97 simulations, with
a large single moonlet at the outer edge of the Roche zone and a small amount of mass
contained in smaller, exterior debris. It has typically been assumed that a more massive
inner moon will overtake and sweep up much smaller outer debris. However, stable capture

of this debris into exterior resonances could prevent mutual collision.

Figure 4a shows the evolution of 2 moonlets with (m;/my) = 100, m; = 10% g
(Mpunar = 7.349 x 10%° g), a starting separation of about 7.6 Ry (just outside the 2:1
resonance) and initially circular orbits. Here and in subsequent figures, the black and green
curves are orbital radii, while the yellow and orange curves indicate perigee and apogee at
each time step, while positions of the (in order of increasing distance from the planet) 4:1,
3:1, 2:1 and 3:2 interior resonances are indicated by the brown curves (we note that only
the latter three resonances are shown in Figure 4a due to the chosen ordinate scale). Times
are shown in units of (seconds/808) and a is in Earth radii. In the simulation shown in
Figure 4a, the outer moon is captured into the 2:1-e, resonance and experiences a secular
increase in its eccentricity; after about 460 years (t = 1.8 x 107) the moonlets are on crossing
orbits. Since our numerical integrations assume A = 0, there is no process which damps
eccentricity for (2w > 3n). If the resonance eventually destabilizes, or if e; was initially
too large to allow for capture into the resonance (e ~ 0.096 for the 2:1 in this case), the
moonlet orbits will continue to converge due to tides and mutual collision is probable. For
the case shown in Figure 4a, at ¢t = 4.8 x 10® (after about 12,300 years) the eccentricity of
the outer moonlet has grown to about 0.6. At this point the resonance no longer protects
the outer body from close encounters with the inner body (e.g. Morbidelli et al. 1995), and

the moonlets experience a close encounter.

Figure 4b is the predicted evolution of e; from the analytic formalism for A = 0 (solid
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line) compared to the numerical results (plotted points). Would dissipation in the moonlets
allow for a stable, equilibrium eccentricity in an external resonance? For the case shown in
Fig. 4, Eq. (19) implies that e; would have an equilibrium value less than unity only for

A > 145; Figure 4b shows the time evolution of e; for A = 100 (dashed line) predicted by
our analytic rate expressions. More generally, equilibrium e, values in exterior eccentricity
resonances are less than unity for (m;/msy) > 20 only for A>20, a nominal upper limit on

A’s value during the history of the Earth/Moon system.

Thus for reasonable values of the relative importance of satellite to terrestrial tides
(0 < A < 20), external resonances with the protomoon would have been unstable for small

exterior material. We predict eventual sweep-up of outer debris by an inner protomoon.

4.2. Tidally Converging Moonlets with m;<ms,

Figure 3 shows the critical mass ratio at a given orbital radius separation for tidally
diverging/converging orbits. Here we consider cases with (m;/msy) <1 such that the moonlets
are initially on converging orbits due to tides (below and to the right of the curve in Fig. 3).
The ICS97 two-moon cases (of which there were a total of 7 out of 21 simulations) fall into
this category. Here we find that the end result is often dependent on the choice of the initial
spin rate of the Earth, which determines the location of synchronous orbit, asy,.. All of the
ICS97 two-moon cases have an inner moon whose perigee is <2.5Rg. Synchronous orbit is
at ~ 2.3Rg for a nominal terrestrial day of 5 hours—this is a typical day length produced
by impacts with close to the current angular momentum of the Earth/Moon system (e.g.
Cameron and Benz 1991). For impacts with twice the angular momentum of the current
Earth/Moon system (which may be favored due to their ability to place more material into

Earth orbit, see CE96 and ICS97), a day length of 2.5 hours is more appropriate.



— 920 —

Figure 5a shows the evolution of the two-moon system shown in Figure 2 (ICS97,

their Run 13); this was the ICS97 two-moon case with the largest value of a;. Here

my1 = 0.39Munar, Mo = 0.63Mynars OQinitiar ~ TR, and we have assumed initially circular
orbits. The moonlets are quickly captured into the 3:1-e;e9 resonance. The inner moonlet
is close enough to co-rotation that both planet and satellite tides are acting to decrease its
eccentricity; however, there is still a net increase in e; due to the resonant interaction. From
Figures 5a-b, at about ¢ = 1.51 x 10°, perigee of m, falls briefly within co-rotation, and the
inner moon at t = 1.52 x 10® becomes trapped in the 4:1. Here again the resonance acts to
increase e;, until perigee of the inner moonlet falls within co-rotation,® at which point the

orbit of m, circularizes and falls into the earth at ¢t = 1.58 x 10%, or after about 40 years.

Figure 6 shows the characteristic outcome for integrations of two-moonlet cases when
perigee of m; is initially inside co-rotation (the case shown is ICS97’s Run 12). The inner
moon immediately begins its decent, with a final collision with the Earth after only about

O years.

If we consider a terrestrial day of 2.5 hours, agyn. ~ 1.5Rg. Figure 7 shows the
evolution of the two moons from Figure 5 with T = 2.5 hours. The moons are again
captured into the 3:1-eje, resonance, and experience a close encounter after about 3 years.
We obtained a similar outcome for all our integrations of the ICS97 two-moonlet cases with

Ty = 2.5 hours.

Thus with A = 0, the inner moonlets predicted by ICS97 collide with the Earth for

rotation rates corresponding to a system angular momentum close to the current value,

3For eccentric orbits the tidal interaction can be well approximated by an impulse at
perigee, since the tidal force is oc 7~7. This means that it is the relative location of perigee

(not mean orbital radius) to co-rotation that determines the overall direction of the evolution.
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while the moonlets mutually collide if the spin rate of the Earth is significantly faster than
this. How would dissipation in the satellites affect these outcomes? The fate depicted in
Figure 6 would change little. However, the resonant interactions in Figures 5 and 7 would
be affected. Figure 8 shows the analytic predictions for e;(¢) from the run shown in Figure 5
for A=0, 1.0 and 10.0. For A = 1.0 and 10.0, perigee of m; remains outside of co-rotation.
Once the moonlets have outwardly evolved so that de/dt due to terrestrial tides is positive
(@2 1.3a5ync), equilibrium eccentricities predicted from Egs. (14) and (15) for A = 10.0
are ey ¢, ~ 0.05, egeq ~ 0.29; for A = 1.0, €1, ~ 0.24 and ey, has a value greater than
unity. Similar results apply for the Ty = 2.5 hours run shown in Figure 7. For satellite
dissipation rates corresponding to A<0.5 — 1, the predicted equilibrium eccentricity of the
outer moonlet in a 3:1 or 4:2-e1e5 eccentricity resonance is greater than unity for moonlet
mass ratios greater than m;/my>0.3. In the case of significant satellite dissipation (i.e. A
values larger than the current value), a resonant configuration between two moons close in
size may have persisted for a considerable length of time. However, such a configuration
would likely have destabilized when A approached its current value. We predict that all of
the specific multiple moonlet cases found in ICS97 would evolve into single moon systems

for expected values of A and a;y..

4.3. Tidally Diverging Moonlets with m; < ms

Here we consider cases to the upper left of the curve in Figure 3; to first order,
these would seem to be the cases most likely to yield a long-lived multiple moon system.
Assuming the moons begin with a stable separation in orbital radius, further tidal evolution
will generally increase their relative separations. Divergence due to tides precludes stable
capture into resonances. The expected outcome is that the outer moon leaves the inner one

behind, and that as long as the inner body is massive enough to keep outside of co-rotation
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(whose position would be determined by the dominant interaction with the more massive

outer moon) we might expect the pair to survive indefinitely.

These expectations are most clearly met when m; < my, as shown in Figure 9
where (m;/ms) = 0.01 and my = 5 x 10** g. The jump in eccentricity as the inner
body diverges across the 2:1 is very distinct, with a resulting e; ~ 0.12. For diverging
orbits with initially low eccentricities, adiabatic analysis predicts a jump in eccentricity
~ €crit, where here eq.;; ~ 0.1 (see Dermott et al. 1988). For (m;/my) = 0.1, we find
a large variation in our numerical results from this symplistic scenario. In Figure 10,
(my1/ms) = 0.1, mg = 0.05Mynqr, and the initial orbital separation is about 5Rpggy;. The
moons diverge through the 3:2, experience corresponding increases in eccentricity, and after
a brief excitation by the 4:7, they resume a potentially stable configuration. Figure 11a
follows the same initial conditions (same mj/ms, a1/as), only here the moons are initially
farther away from the planet. The jump in free eccentricity as the moons diverge through
the 3:2 is again very clear (post-passage e; ~ 0.1 from adiabatic theory). However in
this run, later interaction with the 4:7 (t=1.3e9) perturbed the orbital radius of the inner
moon to such an extent that it crossed the 2:1 (see Figure 11b). At the 2:1, the moonlet
orbits are converging due to tides and capture into the 2:1-e; resonance occurs, followed
by a secular increase in e; until the integration was stopped when the orbits crossed. The
critical eccentricity for the 2:1 for these parameters is e..;; ~ 0.09, which yields a capture
probability of about 10% for an initial eccentricity of ~ 0.19. Another run with identical
moonlet masses and positions but with an initial outer moonlet eccentricity of e;o = 0.1
did not result in capture into the 2:1 in this way, and again left the moonlets on potentially

stable orbits.

Figure 12 shows a run with (m;/mgy) = 0.1, my = 0.07M}ypnar, an initial spacing of 4.2

Hill radii (just outside the 3:2). In this case, eccentricity increases associated with mutual
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perturbations bring perigee of the inner moon inside ay,. after about 2000 years (9x107
in our units), and the inner moon collides with the Earth. We note that the run shown in
Figure 10 probably narrowly missed a similar fate, as perigee of the inner moon extended

inward as far as about 2.6 Rg;.

We completed a total of nine integrations which followed moonlets on diverging orbits
which would have all been predicted to be stable by the CE96 criterion. All but one
of the (m;/my) = 0.1 cases in this category were nevertheless unstable and ended with
mutual collision or with one body colliding with the Earth. Stability of a two-moon system
increases for m; < my, and this would be the most problematic configuration for resolution
with our current one Moon system. However, recent accretion simulations (ICS97) indicate
that this configuration is unlikely to have occurred: by the nature of the morphology of
impact-generated disks, the protomoon or moons form in close orbits (at outer edge of
Roche zone) and are very effective at scattering small inner debris onto the Earth (Figs. 1

and 2).

5. CONCLUSIONS

The purpose of this work has been to conduct a preliminary study of the stability
of a terrestrial multiple moon system, using both analytical techniques and numerical
integrations. In particular, we are interested in the stability of multiple moonlet
configurations predicted by modeling of lunar accretion from an impact-generated disk. Our
results indicate that all of the systems produced in ICS97 will likely yield a single moon for
reasonable values of tidal parameterizations. Our general findings can be best categorized

in terms of relative moonlet masses:
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1) Massive inner moon/Small exterior debris In this scenario, orbits are converging
due to tides and capture into mean-motion resonances can occur for low enough
eccentricities. However, we find that exterior eccentricity resonances are unstable over the
whole range of plausible relative rates of satellite and terrestrial tidal dissipation (A < 20).
The assumption that a large inner moon will eventually overtake smaller exterior material
as it tidally evolves outward is a good one. Thus we expect sweep-up of outer disk debris

which persists at the end of the ICS97 simulations.

2) Two-moons with m; ~ my Here capture into resonances can again occur for low
enough initial eccentricites, and equilibrium values of moonlet eccentricites in resonance are
achieved for high rates of satellite dissipation (A>5 — 10). However, in this case resonances
destabilize as the relative importance of satellite to planetary tides approaches its current

value (A<0.5 —1).

This configuration is predicted by one-third of the ICS97 simulations. In all of our
integrations of the two-moon ICS97 cases, we find that the inner moon rapidly crashes
into Earth (~ years) due to its proximity to synchronous orbit for a terrestrial day of 5
hours. For a more rapidly spinning Earth (as would be appropriate for an initial giant
impact event with >2Jg_j/), the two-moon configuration could have persisted for some
time and the eventual outcome may have been either a moonlet-moonlet collision or a
moonlet-Earth collision. We note that the former outcome was assumed in the accretion

efficiency estimates in ICS97 (their Fig. 5).

3) Inner small material/Massive exterior body In this case, orbits diverge due to
tides and capture into resonance is precluded. This configuration is the one most likely
to yield a stable, multiple moon system around the Earth. However this initial condition

might never be achieved from accretion in an impact-generated, lunar-mass disk, since
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perturbations by the largest moon or moons which form are very effective at scattering

inner debris onto the Earth (ICS97).

This study has highlighted the importance of several factors which predispose a
terrestrial system to a single moon state. First is the rapid rate of orbital evolution of
satellites due to tidal interaction with the Earth. Even for solid body Qg values (@ ~
100’s), a protomoon which forms close to the Earth evolves out to a ~ 20Rg (a typical outer
limit for an impact-generated debris cloud; Cameron and Benz 1991) in only 107 — 108 years.
In contrast, tidal evolution rates around gas planets are 103 — 10* times slower. Second,
terrestrial () values are within an order-of-magnitude of likely () values for orbiting satellites.
This means that the plausible range of “A values”-the relative role of satellite to planetary
tides in effecting satellite eccentricity evolution—extends only up to A <20, with a current
value A ~ 1. For a satellite orbiting a gaseous planet, A ~ 1000. In a terrestrial system,
planetary tides thus play an important role in increasing satellite eccentricities, which acts
to destabilize resonances and to increase mutual collisions. Finally, the large mass-ratio
of the Moon to the Earth, coupled with lunar formation from a central, impact-generated
disk, appears to insure that small inner disk material inside the Roche radius is effectively
scattered onto the Earth (ICS97). In the context of these basic characteristics, it is not
difficult to imagine why systems of multiple moons and rings persist around the gas giants

while at Earth we find our single Moon.

5.0.1. Discussion

Our investigations have been directed towards the general identification of stable vs.
unstable configurations of terrestrial multiple moon systems, and not towards the prediction
of specific end outcomes. Multiple additional processes need to be characterized in order

to make our results more case-specific. The symplectic integration technique utilized here
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breaks down upon close approach between two bodies, and so our simulations are unable to
track the evolution of systems until a physical collision actually occurs. A new symplectic

technique recently developed (Duncan et al. 1998) promises to remedy this deficiency.

A self-consistent incorporation of tides raised on orbiting satellites into a numerical
scheme would allow for a much more thorough examination of the effects of high early
rates of satellite dissipation on system stability. This would be particularly important
for the case of multiple moonlets which are close in size. Such an improvement would be
warranted if results from higher resolution simulations of the impact event and improved
disk accretion models continue to suggest high likelihoods of multiple moon configurations
such as the “two-moon” cases found in ICS97. The variation in satellite tidal dissipation
rates can also have a significant effect on outcomes of specific cases. For significantly high
eccentricities and A values, da/dt due to tides is negative (see Touma and Wisdom 1998,
their Figure 6). This would of course alter the analysis of when a given pair of moons is
tidally diverging or converging. Such reversals in orbital evolution direction would likely
be short-lived (see Touma and Wisdom 1998, their Figure 9), as high A values will act to

decrease eccentricities.

We have investigated only the planar eccentric problem in this work, and our future
work will explore the effects of moonlet inclinations on system evolution. We have also
neglected the effects of Sun, which have recently been shown to have a significant influence
even in the inner disk through the resonance between the lunar periapse precession rate
and the Earth’s orbital period around the sun (the “evection” resonance), which occurs at
a = 4.6 Rg (Touma and Wisdom 1998). Capture into this resonance is capable of producing
large eccentricities for a lunar-sized body (e ~ 0.1 — 0.5 for A = 0 to A = 10) on a time

scale of thousands of years.

Finally, our results are dependent on the specifics of the giant impact event itself.
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Currently two impact scenarios have been shown to be capable of yielding sufficiently
massive debris disks: impacts with an angular momentum >2 times that of the current
system, and impacts with an Earth which has not yet fully accreted (Cameron 1997b,
Cameron and Canup 1998). Recent SPH simulations of these types of impacts often yield
massive, gravitationally bound clumps of debris in stable orbits subsequent to the impact
event (Cameron 1997, Cameron 1997b, and Cameron and Canup 1998). The existence of
such clumps in the initial disk could cause the distribution of moonlets which accretes from
the disk to vary from the ICS97 predictions. Additional accretion simulations are required
to determine the typical number and sizes of moons which form in these recently modeled

impact scenarios.

We wish to thank Jack Wisdom for a preprint, Shigeru Ida for his help with data from
ICS97, Al Cameron for many fruitful discussions, and Matt Holman for a helpful review.
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Fig. 1.— An example of the collisional evolution of an initially centrally-condensed

protolunar debris disk (from ICS97, their Run 4). Cross-sections of the disk are shown
at times ¢ =0, 50 and 1500 orbits at 3Rg (where 1500 orbits ~ 15 months). The y-axis
is the absolute value of the vertical height above the Earth’s equatorial plane. The dashed
semi-circle is the surface of Earth. The relative sizes of the disk particles are indicated, but
are not shown to scale. The initial disk mass was 2.44 lunar masses; the largest moonlet

which forms at 3.5Rg has a mass of 0.4 M-
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Fig. 2.— An example of the collisional evolution of a more radially extended protolunar
debris disk (from ICS97, their Run 13). Cross-sections of the disk are shown at times ¢ =0,
50 and 1000 orbits. The initial disk mass was again 2.44 lunar masses; the largest moonlet at

5.7TRg has a mass of 0.63 M4, while the inner moonlet at 2.7Rg has a mass of 0.39 M-
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Fig. 3.— The solid curve is the asymptotic value of a; /as due to the principal terrestrial tide
as a function of moonlet mass ratio. Above and to the left of the curve moonlet orbits diverge
as they tidally evolve; below and to the right orbits converge due to tides. Also shown are
the positions of first and second order mean-motion resonances. The solid horizontal line
is the a1 /ag separation required for two-body stability with (m; + ms) = Mjype-. The only
first or second order resonances outside the 3.5Ry;; stability separation in this case are the

3:1 and 2:1.



12

11

10

(&)
\\\\\\‘\\\\‘\

5x10° 10 1.5x10"

o

Fig. 4.— (a) Numerical simulation of the evolution of two moonlets (m;, my = 10%°,10% g).
The black and green curves are a; and as respectively, while the yellow and orange curves
show periapse and apoapse at each time step. The brown curves indicate the location of
the 3:2 (at ~ 4.8Rg at t = 0), 2:1 (at ~ 3.9Rg at t = 0) and 3:1 interior mean-motion
resonances. The y-axis is in Earth radii; the x-axis is (t(sec)/808). A terrestrial tidal time
delay of At = 11.54 minutes and a terrestrial day of 5 hours were used. Effects of satellite
tides are not included (A = 0). The moons are quickly captured into the 2:1-e; resonance,
and ey continues to increase until the moons collide (at ¢ = 4.8 x 10%). (b) (NEXT PAGE)
Analytical predicted evolution of e due to the 2:1-e5 resonance for the case shown in (a)
with A = 0 (solid line) and A = 100 (dashed line). Numerical results for A = 0 case are

shown for comparison.
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Fig. 5.— (a) Numerical integration of the evolution of the two-moonlet case from 1CS97
shown in Figure 2 (their Run 13). A terrestrial day of 5 hours, or as,. = 2.33Rg
was assumed. Here the two moons are captured into the 3:1-eje, resonance until about
t = 1.5 x 10° (about 40 years). After a brief period of capture in the 4:1, perigee of the
inner moon falls within synchronous orbit and its orbit then circularizes and falls into the
Earth. (b) NEXT PAGE The evolution of relevant quantities from the simulation shown

in Figure 5a.
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Fig. 6.— The evolution of another two-moon case from ICS97 (their Run 12). Here periapse
of my is initially inside synchronous orbit for a terrestrial day of 5 hours, and the inner moon

collides with the Earth after about 5 years.
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Fig. 7.— The evolution of same two-moon ICS97 case as shown in Figure 5, but here we
have used a terrestrial day of 2.5 hours (asyn. ~ 1.5Rg). The moons are again captured into

the 3:1-e1e5 resonance, but in this case they experience a close encounter after about 3 years.
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Fig. 8.— The anaytic predictions for the case shown in Figure 5 for A=0 (dashed), A=1
(dot-dashed) and A=10 (dotted). In this case, e; has an equilibrium eccentricity less than

unity only for A>1.5.
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Fig. 9.— The evolution of two moonlets with m,, my = 5x 10?2, 5x 10?* g. Here the moonlet
orbits are diverging due to tides and so capture into resonance does not occur. The inner

moonlet experiences a jump in eccentricity as it diverges through the 2:1-e; resonance.
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Fig. 10.— The evolution of two moonlets with m;, ms = 3.6 x 10%, 3.6 x 10*

g. The moons
are initially just outside the 3:2, and remain on diverging, potentially stable orbits at the

end of the simulation.
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Fig. 11.— A simulation using the same my, my, and a;/ay values as in Figure 10, only here
the moons are initially farther away from the planet. In this case, capture into the 2:1 leads

to orbit crossing.
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Fig. 12.— Numerical integration of two moons with m;, ms = 5 x 10%,5 x 10?* g. Jumps in
e; eventually bring periapse of the inner moon to within synchronous orbit (about 2.3Rg),

where tides cause it to evolve inward and collide with the Earth after about 2060 years.



