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ABSTRACT

We present a new symplectic algorithm that has the desirable properties of the
sophisticated but highly efficient numerical algorithms known as Mixed Variable
Symplectic (MVS) methods, and that in addition can handle close encounters
between objects. This technique is based on a variant of the standard MVS
methods, but it handles close encounters by employing a multiple timestep tech-
nique. When the bodies are well separated, the algorithm has the speed of MVS
methods, and whenever two bodies suffer a mutual encounter, the timestep for
the relevant bodies is recursively subdivided to whatever level is required. We
demonstrate the power of this method using several tests of the technique. We
believe that this algorithm will be a valuable tool for the study of planetesimal
dynamics and planet formation.
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— planetary systems — solar system: general
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1. Introduction

In the last few years, the capacity ®f the astrmn®wmical cemmunity t® perfsrm lsng-
term numerical ®rbital integratimns sf swlar system ®bjects has increased by a factwr sf sver
100. This incredible increase is due in part t® the availability f fast, lew-cmst cemputer
werkstatimns. Mwsre impsrtant, hewever, has been the develspment sf ssphisticated but
highly efficient numerical algsrithms kn®wn as Mixed Variable Symplectic (MVS) methads
(Wisdem & Hslman 1991, hereafter WH91; Saha & Tremaine 1992). With MVS methwsds,
integratimns wf wbjects in the wuter swlar system wn timescales apprsaching the age wf the
selar system (4.5 billimn years) are nsw pusssible.

Despite their pmwer and their many centributisns, the MVS algsrithms have severe
limitatimns. In particular, nene ®f the existing methmds allsws adaptive timesteps.? Hence
the existing methwds cannst handle clese encsunters between wbjects. Yet the ability tw
fsllmw clese encsunters between wbjects is very imp®rtant t® sur understanding wf many sf
the prmcesses that mmlded, and are cwntinuing tw affect, the structure »f wur smlar system
(and sther planetary systems). Included in these pracesses are (i) the accumulatismns sf the
planets, (i) the leng-term evelutimn ®f unstable planetary and satellite systems, and (#i7)
the l@ang-term dynamics sf small badies.

In this paper we develsp a new symplectic algmrithm that can integrate threugh clsse
encsunters between bsdies. The algsrithm cembines a variant of the standard MVS methwds
with an impreved versimn sf the multiple timestep methads, sriginally develsped by Skeel &
Biesiadecki (1994; see alss Biesiadecki & Skeel 1993). This new secend-srder methsd has the
desirable preperties of a symplectic meth®d, and it has the speed sf the MVS methads when
the bmdies are well separated. In § 2, we present a brief review wf symplectic integrat®rs
and MVS metheds. In § 3, we discuss the clese encsunter algmrithm. In § 4, we develsp a
variant sf the MVS methsds that is used as the basis fer mur new algsrithm. The camplete
new algmrithm is described in § 5, and it is tested in § 6. Finally, we present sur cencluding
remarks in § 7.

2Tn original form, the MVS methods require a constant timestep for all particles. A method with indi-
vidual, but not adaptive, timesteps was developed by Saha & Tremaine (1994).
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2. Background on Symplectic Integrators

Symplectic integrators have become popular in recent years because the Newtonian
gravitational N-body problem is a Hamiltonian problem and these integrators preserve cer-
tain properties that are intrinsic to Hamiltonian systems (see Sanz-Serna & Calvo 1994 for
a review). In particular:

(i) As their name implies, these integrators are symplectic, i.e., they preserve the sym-
plectic structure dp A dq, where (g, p) are the canonical phase-space coordinates. This
conservation property is the generalization of the preservation of phase-space area for
a two-dimensional phase space.

(ii) Symplectic integrators solve exactly a nearby “surrogate” Hamiltonian problem with
H = H + Hg,. For sufficiently small timestep 7, H is often well represented by an
autonomous Hamiltonian (see discussion in the next paragraph). Consequently, we
expect that the energy error is bounded.

(iii) Many (but not all) symplectic integrators are time reversible.

Not all of these properties apply to all symplectic integrators. For example, if the timestep
is varied in any way during an integration using a symplectic integrator designed for a fixed
timestep, then properties (ii) and (iii) do not necessarily apply (see, e.g., Lee et al. 1997
and references therein). If in addition the timestep is varied according to the phase-space
coordinates of the bodies in the integration, property (i) is lost as well (i.e., the integration
is no longer symplectic; Skeel & Gear 1992). Thus, it is not possible to resolve an encounter
by simply decreasing the timestep of an integration without losing the desirable properties
of a symplectic integrator.

In many cases of interest, the Hamiltonian H can be divided into several parts:

N
=0
such that each of the individual H; is integrable. For the remainder of this section, we take
N =1, although, as we discuss below, N can be arbitrarily large. There are two relevant
formalisms in the literature for generating symplectic integrators from Hamiltonians of this
form. In the first formalism, it is noted that the evolution of the phase-space coordinates

w = (q,p) under H for a time 7 is

w(r) = ¢ Mw(0) = e I w(0), @
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where { , } is the Poisson bracket. In this formalism, a second order scheme is constructed
by approximating the above operator by a composition of operators (Ruth 1983; Forest &
Ruth 1990; Yoshida 1990):

eT{ 7H0+H1} ~ 6(7—/2){ aHO} eT{ zHl} 6(7—/2){ 5H0}_ (3)

The three operators on the right side of equation (3) represent an algorithm that starts with
evolving the system under the influence of only H, for half a timestep, then evolving it for
a full timestep under the influence of H;, then another half a timestep under Hy. For a
symplectic integrator constructed by a composition, it can be shown by using the Baker-
Campbell-Hausdorff (BCH) identity that the integrator solves a “surrogate” autonomous
Hamiltonian problem with H=H+ He (e.g., Yoshida 1993). The expression for He,, is a
formal series in the timestep 7 and does not converge in general, but for sufficiently small 7
the errors of the integrator are well represented by the leading term(s) of the series. For the
second-order scheme,

72 1
Herr - E{{H()a Hl}; Hl + §H0} + O(T4)' (4)

In the second formalism for the development of symplectic integrators (WH91), high-
frequency terms are added to the Hamiltonian H to obtain a (time-dependent) mapping
Hamiltonian of the form

Hyop = Ho + O(t,7)Hy, (5)

where 7 is the timestep of the integrator and ®(¢,7) is a sum of periodic delta functions:

-1
B(t,7) =21 Y _ ajbar [27 (t/7 — &5)]. (6)
§=0
Here dy, () is the periodic delta function of period 27, 8o, (z) = 3,2 d(x — 27l). So @ is
a sequence of L delta functions per timestep, with amplitudes a; and phases ¢; € [0, 1).

At the times when ® = 0, Hy,p, = Hy, so that Hy,, is integrable. When @ is not
zero, then Hp,,, is effectively H;, which again is integrable. The integration scheme is thus
a sequence of steps alternating between the evolution purely due to Hy and the evolution
purely due to H;. If we choose L = 1, ap = 1, and ¢y = 1/2 (WH91), this integration scheme
is second-order, and it is in fact identical to the scheme in equation (3).

We will denote the above second order symplectic integrator by

Eo(1/2) B (1) Eo(7/2), (7a)
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where E;(7) represents the evolution operator under H; for time 7. Note that another valid
second order symplectic integrator can be written as

Ei(1/2) Eo(T) Er(7/2). (7b)

The Hamiltonian for the gravitational N-body problem is

n

H = z"’z 559>

2m2 1=0 j=i+1

G’mzm]

(8)

Tij

where p; is the momentum of particle 4, and r;; = |q; — q;| is the distance between particles
7 and j. The simplest division of the Hamiltonian into integrable parts is to represent it as

H = Hr(p) + Hy(q), 9)

where the g’s and p’s are the conjugate phase space coordinates. In this case the second-order
integrator equation (7a) is

- T
p = p,+;F(q),

2
4. = a,+7G(p), (10)
T
Piy1 = P+§F(Qe+1);

where ' = —0Hy/0q and G = 0Hr/Op. This integrator is the familiar second-order
leapfrog integrator. To achieve an accuracy of ~ 107° in the energy for an integration of the
solar system, this “I'+V’ type second-order symplectic integrator requires a timestep ~ 1073
of the smallest orbital period.

However, for solar-system type integrations, a central body (the Sun) is much more
massive than the other bodies in the system, and it is better to write

H = HKep + Hintu (11)

where Hyep, is the part of the Hamiltonian that describes the Keplerian motion of the bodies
around the central location and Hj,; is the part that describes the perturbation of the bodies
on one another. In particular, WH91 wrote

2 .
Hiw = ('p” Gmim") 12)

i=1 2m; T

and

n ; ; n—-1 n G M
Hint:z<Gmmo_Gmm0> B m;m;

=1

!
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where r;, is the distance between body 7 and the Sun and the primed variables refer to the
Jacobi coordinates. The Jacobi coordinates can be viewed as a system where the position and
momentum of each body is taken with respect to the center of mass of all bodies with lower
indices (see WH91 for a formal definition). Symplectic integrators based on this division of
the N-body Hamiltonian are often referred to as MVS integrators (Saha & Tremaine 1992).

Following equation (7a), a second-order MVS step involves: (i) evolving all the bodies
along their Kepler orbits for time 7/2; (i) applying a kick to the momentum of each particle
due to the interaction Hamiltonian (which is a function of g; only) for time 7; (74) again
evolving all the bodies along their new Kepler orbits for time 7/2. There is also a second-
order scheme that is based on equation (7b).

WH91’s MVS technique revolutionized the field of planetary system integration because
of its speed. It has allowed integrations of a large number of particles for timescales as long
as the age of the solar system (see Holman & Wisdom 1993 and Duncan et al. 1995 for
examples). For well separated orbits of low eccentricity, the MVS technique gets it speed
from the fact that |Hin| < |Hkep| by the ratio of the planetary mass to the solar mass, e,
which in turn allows the timestep of a second-order method to be increased by a factor of
e~ 1/2 compared to a ‘T+V"’ leapfrog scheme. Typically, the second-order MVS methods give
reasonably accurate results for timesteps on the order of 1/20 of the shortest orbital period.

Unfortunately, the MVS method loses its speed advantage when either term in Hiy
(eq. [13]) becomes large. Indeed, it will fail if an integration is in progress with a large 7 and
the magnitude of Hiy, grows too large. This happens in two cases: (i) The first term in Hiy
will get large if any body besides body 1 gets close to the Sun. This does not happen for
body 1 because r; = 719 and thus the first term is always zero. (i7) The second term grows
if two bodies get too close to each other.

MVS methods cannot handle close encounters between bodies while preserving their
speed. Typically, users of MVS methods have been forced to stop their integrations if close
encounters have occurred (e.g., Holman & Wisdom 1993; Duncan et al. 1995; Duncan &
Lissauer 1997). To handle close encounters between test particles and planets, Levison &
Duncan (1994) had to abandon time-reversibility and the surrogate Hamiltonian in their
RMYVS integrator, which uses a combination of timestep reduction and changing to planet-
centered coordinates. In the next sections, we present a second-order symplectic algorithm
that has the speed of MVS methods if the bodies are not involved in encounters, and that
additionally can handle arbitrarily close encounters.
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3. Multiple Timestep Symplectic Methods

In this section we describe a multiple timestep symplectic integrator that has all the
desirable properties of the constant timestep symplectic integrators as described in § 2. This
algorithm is based on ideas proposed by Skeel & Biesiadecki (1994). Some elements of our
method are similar to the individual timestep scheme of Saha & Tremaine (1994).

For simplicity, let us consider first a “T'+V" integrator for the two-body Kepler problem.
In this case the potential energy part of the Hamiltonian (cf. eq. [9]) is

HV _ _Gm0m17 (14)

r

where r = |q| is the distance between the two bodies. The essence of our new technique in the
current context is to place a series of shells around the Sun and to associate a smaller timestep
with a smaller shell. As the planet approaches the Sun and crosses these shell boundaries,
the timestep of the integration decreases, thereby allowing better resolution of the perihelion
passage. This process must be done in such a way as to preserve the symplectic nature of
the integrator. We therefore choose a set of cutoff radii Ry > R, > --- and decompose Hy
into 34 Vi, or equivalently the force F into Y, Fp = — >, 0Vi/0q, such that:

(i) F(r) =320 Fr(r) for all r,
(ii) Fy (except Fy) is zero at r > Ry, and

(iii) Fy is “softer” than Fy,q (see, e.g., Fig. 1).

We now choose a different timestep for each term in this series over Vj. In particular, the
force Fy is to be applied with a timestep 7. In addition, 73 /7; 1 must be an integer. In

general this integer can be a function of £, but in this implementation we set it to a constant,
M.

With the Hamiltonian in the form
H=H;+ )Y V, (15)
k=0

we can apply the second-order symplectic integrator in equation (7a) recursively to obtain
the following second-order algorithm:

By, (1) = Eo(10/2)Ex,(10)Eo(70/2)
~  Eo(10/2)[E1(11/2) Es, (1) Ey (11/2)]" Eo(70/2) (16)
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where E;(7) and Ex,(7) denote the evolution of the phase-space coordinates under V; and
Hp + Y32, Vi, respectively, for a timestep 7. The first line in equation (16) is simply an
application of the second-order scheme in equation (7a), with the evolution under V; as
the outer half-steps. At each level 7 of the recursion, the evolution under Hp + >°2°, Vi,
i.e., Ex,(m_1), is approximated by M second-order steps of length 7;, with E; as the outer
half-steps.

In principle, the number of recursion levels is infinite; however, in practice, the recursion
is always truncated. This is due to the fact that if » > R,,; then for £k > n, Fy = 0 and
E}, is the identity operator. Therefore, Ey;, ., (7,) simply reduces to Er(7,), where Ep is the
evolution under Hr, and the recursion terminates. In particular, if » > R; during the entire
step of length 7, this algorithm reduces to the standard leapfrog integrator. As r decreases,
the forces are better and better resolved. However, it is important to note that although the
timestep appears to vary, the high frequency terms are in principle always there, but have
no effect if the associated E}’s are the identity operators. Therefore, this method is a fixed
timestep symplectic algorithm and has all the properties listed in § 2.

Let us now discuss how to decompose the potential Hy = —1/r into >, Vi (we drop the
factor Gmgm; for now) or equivalently the force F into 3, Fy = — Y, 0V;/0q. There are
additional conditions that Vj and F'y, must satisfy, and they can be deduced by examining the
“error” Hamiltonian He.,. For the multiple timestep algorithm (16), we can derive Hey by
using the BCH identity recursively. The result can be simplified by noting that {Vj, V;} =0,
and it is (cf. eq. [4])

oo
Herr: ZI
k=0

=

1 oo
{Vi, Hr}, Hr + Vi + 37 Vih +0(7). (17)
£=k+1

[\™]

It is essential that at least the lowest order [i.e., O(77)] terms in H,,, are well defined. Since
the lowest order terms involve nested Poisson brackets (and hence the second derivatives of
Vi), Vi should at least have smooth second derivatives (and F'y smooth first derivatives).
Similarly, if we want the next order [i.e., O(7?)] terms in He. to be well defined, V; must
have smooth fourth derivatives. Another condition that F';, must satisfy concerns the rate
at which |Fy| decreases with decreasing r at r < Ry. As can be shown from equation (17),
the number of non-zero terms in H,,, increases with decreasing r. Thus, in order to ensure
that the energy error does not increase rapidly with decreasing r, we want the magnitude of
the kth term in equation (17) to decrease with r at r < Ry. If we assume that |F| ~ r* at
r < Ry, a simple scaling argument using equation (17) shows that « must be > 2. We have
confirmed through experimentation that both of the conditions discussed here are required.
(As we shall see, for the SYMBA algorithm described in § 5, V;, and F'; must satisfy the
same conditions.)
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After some experiments, we have found two approaches to potential /force decomposition
that work well. In both cases, it is convenient to write

Hy =Y Vi=Vo+ Vi =Vo) + (Vo = Vi) + -+, (18)

k=0
so that Vo = Vy and Vi, = Vi, — Vi, for k # 0, and to define fk = —8‘7k/8q.

One approach is an improved version of the method suggested by Skeel & Biesiadecki
(1994). For each Vk_l, we let V,_; = —1/r at 7 > Ry and match it to a truncated Taylor
expansion of —1/r at r < Rj. If we write r/R;, = s'/™ and expand the potential —1/r =
—8_1/"/R;c as a Taylor series in s at s = 1, then at r < Ry

et G R - )T} o

Fj,=- {1 + n: ! [1 - (}%)n] +} <RLk)n_2Ri% 0

If we truncate the Taylor series in equation (19) after the ¢th order term, Vi_1 is smooth up
to the /th derivatives, and |fk_1| x ™ !t at r < Ry. The two types of decomposition used
by Skeel & Biesiadecki (1994) have £ = 1 and either i) n = 1 or ii) n = 2, and they do not
satisfy the minimal conditions discussed above. To satisfy the minimal conditions, we need
f=2and n =4 and

= [ —q/r if r > Ry,
Fy1= { —[9—5(r/R)"] (r/Ry)2q/AR} ifr < Ry. (21)

and

If a smoother force is required, we can choose £ = n = 4 and

~ ro\ 4 r\8 r\12] /7 \2 gq
Fooo—— 6631105 (") + 765 (—) 1905 (—) (—) 99
B [663 0 (R,) * Ry, Ry, Ry,) 128R} (22)

if r < Ry. Note that these forces can be evaluated efficiently at r < Ry because they involve

only powers of 2.

An alternative approach is to multiply the force by a partition function so that |fk_1|
decreases smooth from 1/r? at r > Ry to zero at r < Ry,1:

—q/r? ifr >Ry,
F,_, = —fe(ﬁ}i%) q/r® if Rey1 <r <Ry, (23)
O 1f7‘ < Rk+1 .

The simplest partition function fy(z) is the (2¢41)th order polynomial in z that has f,(0) =
1, fe(1) = 0, and all derivatives up to the ¢/th derivative zero at x = 0 and 1. (In principle,
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F)_; must be derivable from a potential Vk_l; this is always true if f, is a function of
only the magnitude of @, r, but not its direction.) Since ’ka_l = 0 at r < Ryyq, this
decomposition automatically satisfies one of the minimal conditions discussed above. To
satisfy the smoothness requirement, we can choose £ = 1 and fi(z) = 22® — 322 + 1. If a
smoother force is required, we can choose £ = 3 and f3(z) = 2027 — 702° + 842° — 352* + 1.

For the remainder of this paper we adopt equation (23) with £ = 1. We developed this
force law first and it has been tested the most thoroughly. The forces derived from this force
law are shown in Figure 1. It should be noted, however, that at least in some cases the force
law given in equation (22) gives slightly better behavior and appears to be just as stable.
However, this force law would need to be better tested before we can recommend it over the
one in equation (23).

We have implemented the multiple timestep “T'+V’ method for the two-body Kepler
problem, and tests confirmed that this method has the expected properties (see Lee et al.
1997). This method can easily be extended to handle more bodies. In general, for the
gravitational N-body problem,

n—1 n . n—1 n
H--% 3 Gmim; _ > 3 v, (24)
i=0 j—itl ij i=0 j=i+1

Each term can be divided using the technique discussed above so that

n—1 n [e's)
Hy=% 3 5 Vi (25)
i=0 j=i+1k=0
In this case, each 75 force pair is handled independently. Thus, if an encounter occurs
between a pair of particles, the force for that pair and only that pair is sampled on a shorter
timescale.

In principle, an integrator can be constructed that combines the MVS method of WH91
with the multiple timestep technique described in this section. Note that the second term in
the interaction Hamiltonian of the MVS method (eq. [13]) is of the same form as the potential
Hamiltonian of the ‘I'+V” method (eq. [24]). Thus it is possible to subdivide the second
term in the interaction Hamiltonian in the same manner (eq. [25]). In this case, the method
is the same as the MVS method far from encounters and thus has its speed advantage. As
two bodies enter an encounter, however, the high frequency force terms become non-zero
and the timestep of the integrator is effectively decreased.

In practice, we find that this multiple timestep MVS integrator fails to behave properly
for close encounters. Note from equation (12) that, because of the use of Jacobi coordinates
and Jacobi masses, each body revolve about a different center with a different “effective”
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central mass in the Kepler part of this algorithm. This difference is compensated for by the
first term in Hiy (eq. [13]). Due to the nature of our multiple timestep algorithm, Hyep
is applied at high frequency during an encounter, whereas the first term in Hy, is applied
at its original low frequency. Therefore, they no longer compensate each other sufficiently
accurately and thus the integrator fails. A new integration method, related to the MVS
method, is required to solve this problem. Such an integrator is developed in the next
section.
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4. Democratic Heliocentric Method

The solution to the failure of the multiple timestep MVS algorithm is to develop a
variant of the standard MVS method that has all the bodies orbiting around the same
central body, with the same central mass, in the Kepler part of the algorithm. In order to
start the development of this new technique, we define, as we did above, gq; and p; as the
position and momentum of body i. Then the Hamiltonian (eq. [8]) is

n n

H(g,.p) z LYy Gmmy (26)

—0 2T 1=0 j=1+1 ‘qz qg‘

where body 7 = 0 is the Sun. We wish to define a new set of conjugate coordinates, @, and
P;, so that the new positions are the heliocentric positions (if ¢ # 0) and the position of the

q; — 49 ifi#0
Qi:{ 1 3 if ¢ (27)

m;q;, ifi=0 >
mtotjgo 749

center of mass (if 1 = 0):

where myor = 37 my is the total mass. So we use a generating function of the new positions
and old momenta (see, e.g., Szebehely 1967):

Wi(Qi;;p;)) = —po- ( Zm]Q)

Mot j=1
(28)
_sz" (Qi+QO Zm]Q)
i=1 Mot j—1
The new coordinates are canonical if
1 & e
. 3W3_ Qi+Q0_m]§1mJQ]’ ifi#0 (29)
‘T op, 1 & s
and
L= ot o ifi#£0
8W pz Mio ; p] 1
p=-222-) TR (30)

0Q; > p, ifi=0.
j=0

Thus the new canonical momenta are the barycentric momenta (if 7 # 0) and the total
momentum of the system (if 7 = 0). The Hamiltonian becomes
" ‘Pz‘Q Gmimo
H@.P) = (-
2\ " el

i=1
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(31)

_Gmim;
P Q,

i=1 j=i+1

Pof*

* 2Migot 2mo

ZP

As expected, the center of mass (i = 0) moves as a free particle, and its contribution to the
Hamiltonian can be ignored. Thus H(Q,;, P;) = Hkep + Hsun + Hint, where

" (|P;* Gm;
HKepzz<| °_ mm())’ (32a)

i=1 sz ‘Qz‘
1| P
Hon = 5|3 P, (32b)
i szm]
m (32C)
T ZZM% Q- Q;l

We denote the part of the Hamiltonian in equation (32b) as Hg,, because — Y1 | P; =
Dy — (Mmo/miet) Yoo P; is the barycentric momentum of the Sun.

For the above Hamiltonian, we can construct a second-order single timestep symplectic
integrator of the form

Esun(7/2) Ein(7/2) Exep(T) Fint(7/2) Egun(7/2). (33)

(Since {Hsun, Hins} = 0, the ordering of Fs,, and Ej,; does not affect the result) The
algorithm is thus: (i) Each body takes a linear drift in position of the amount ;- > Pi.
(74) Each body receives a kick to its momentum due to the gravitational force of the other
bodies (except the Sun) in the system for 7/2. (4ii) Each body evolves along a Kepler orbit
for time 7. (iv) Each body again receives a kick to its momentum for 7/2. (v) Each body
again takes a linear drift in position.

Figure 2 shows a comparison between the standard MVS method and this new method,
where we integrated the 4 outer planets of the solar system using both techniques with a
timestep of 0.4 years. The top panel of the figure shows the fractional change in the energy
of the system as a function of time in the MVS integration. Notice that it has the desired
characteristic of a symplectic integrator that the energy error is bounded. The bottom panel
shows the same quantity for the integration using the new algorithm. The energy error is
also bounded in this case. In addition, the magnitude of the energy variations in the two
runs are very similar, both having an rms variation ~ 5 x 107 about the mean.

This new method has several advantages and disadvantages over the standard MVS
method. It has the desired characteristic, discussed at the beginning of this section, that
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all the objects revolve about the same central location with the same central mass in the
Kepler part of the algorithm. (In addition, the Es,, parts do not change the relative position
Q; — Q; between two bodies.) This will allow us to apply the multiple timestep algorithm
presented in the last section. Since the central mass is the same for all bodies and the
positions are the heliocentric ones, we call this method the Democratic Heliocentric or DH
method.?

Another important advantage of the DH method is that while the ordering of the bodies
is important in the MVS scheme, it is not in the DH method. Recall from § 2 that the Kepler
part of the MVS integrator is based on the Jacobi coordinates. Recall also that the Jacobi
coordinates are a system where the position and momentum of each body is taken with
respect to the center of mass of all bodies with lower indices. The formal definition of the
Jacobi coordinates does not specify a particular ordering of the bodies, and it is possible to
order them so that, for example, in a system with two planets, the outer planet’s q' and
p' are taken with respect to the Sun, while the inner planet’s are taken with respect to
the center of mass of the Sun and the outer planet. However, with such an ordering, the
energy conservation of the MVS algorithm is significantly degraded (see also Chambers &
Wetherill 1998). It is much better to order the bodies so that increasing indices correspond
to increasing semi-major axes.

This ordering becomes problematic when we consider a system of massive bodies on
crossing orbits, such as in planet formation simulations. In this case, objects will experi-
ence large changes in their semi-major axes due to close encounters. Thus, the appropriate
ordering for the MVS integrator, which is based on semi-major axes, will not be the same
for all time. Unfortunately, it is not possible to reorder the particles, because this changes
the surrogate Hamiltonian associated with the integration. Therefore, any close encounter
algorithm that is based on the MVS method can have significant problems, even if the en-
counters are accurately integrated. Fortunately, the DH method does not suffer from this
problem.

The largest disadvantage of the DH method is that it does not handle orbits with small
pericentric distances very well. This is best illustrated by considering the Kepler problem.
The top panel of Figure 3 shows the maximum fractional energy error in a system with
the Sun and Jupiter as a function of Jupiter’s perihelion distance. Jupiter was initially at
aphelion, and the system was integrated for 3 x 10° years with a timestep of 0.15 years

3Touma & Wisdom (1994) also used the coordinates Q; and P; in their Lie-Poisson integrators, which
are extensions of the MVS integrators for rigid body dynamics. However, they moved terms of the form
|P;|?/2mg from Hgyn to Hkep. This grouping results in different central masses in the Kepler part of the
algorithm and different linear drifts in the Fgy, parts.
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(i.e., ~ 79 steps per orbit). The MVS method can integrate the Kepler problem to machine
precision (independent of timestep) because the interaction Hamiltonian is zero in this case
(see eq. [13]). This degeneracy does not happen in the DH method. As equation (32) shows,
although Hj,; = 0 in the Kepler problem, Hgy, is not. This is due to the fact that the
conjugate coordinates in this integrator are the heliocentric positions and the barycentric
momenta. So, even in the Kepler problem, the Kepler part of the DH method (eq. [32a])
does not represent the orbit exactly, and Hg,, is needed as a correction. The error grows as
Hsyn (or |Pq]) becomes large, which happens if the planet gets close to the Sun. Therefore,
the error of the integrator increases with decreasing pericentric distance, as seen in the figure.

We should note, however, that the MVS method can only handle small pericentric
distances for massless particles and the innermost planet (if they have the lowest indices).
For a massive body that is not the innermost planet, the first term in H;,; is not identically
zero. Thus, the MVS method will fail if one of these objects comes too close to the Sun.
As an example, we integrated a system consisting of the Sun, Jupiter, and Saturn. We set
Saturn’s inclination (relative to Jupiter) to 90°, and varied its eccentricity esgatum. In order
to avoid close encounters between the planets, if egapum < 0.6, we set the argument of the
perihelion of Saturn to 90°. In this geometry, Saturn’s perihelion and aphelion passages
occur perpendicular to Jupiter’s orbit. In addition, we set the argument of the perihelion
of Saturn to 0° if egapym > 0.6. Each integration lasted for 3000 years and had a timestep
of 0.15 years. The bottom panel of Figure 3 shows the maximum fractional energy error in
this system as a function of Saturn’s perihelion distance. The solid and dashed curves show
the results for the DH and MVS integrations, respectively. For both integration techniques,
energy conservation degrades as Saturn’s pericentric distance decreases. For orbits with
Qsaturn < 2.5 AU, the DH method outperforms the MVS method. Indeed, the DH method
conserves energy about an order of magnitude better than the MVS method in this case.

We wish to emphasize that our intent is not to condemn the MVS technique, which has
been used extensively in planetary dynamics for several years. The MVS method is excellent
for the problems to which it has been applied in the past, i.e., problems with the planets
on non-crossing orbits and massless particles. However, our goal in this paper is to develop
a technique for studying, among other things, the late stages of planet formation, where
massive bodies can be on eccentric, crossing orbits. For this case, the DH method is clearly
superior to the MVS method.
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5. SyMBA

We can now combine the DH method described in § 4 with the multiple timestep tech-
nique described in § 3 to construct a second-order symplectic integrator that is capable of
handling close encounters. It is straightforward to apply the multiple timestep technique,
because the interaction Hamiltonian Hi, of the DH method (eq. [32c]) is the same as the
potential Hamiltonian of the ‘I'+V’ method (eq. [24]) and can be replaced by Y Vi in the
same manner (eq. [25]). This new algorithm has the speed of the MVS method when en-
counters are not taking place, and its timestep is effectively decreased during an encounter.
We call this new method the Symplectic Massive Body Algorithm or SyMBA.

SyMBA is a time-reversible symplectic algorithm, and it has all the desirable properties
listed in § 2. In particular, SyYMBA has a surrogate Hamiltonian H = H + H,,,. As in the
case of the multiple timestep ‘T"+V’ method (see § 3), the error Hamiltonian H,,, can be
derived by using the BCH identity recursively. If we define

n—1 n

i=1 j=i+1

and use the fact that {Vi, Vo} = {Hsun, Vi } = {{Hsun, Hxep}s Vi} =0,

T2 1
Herr = %{{HSunuHKep}aHKep_f’EHSun}
(35)

o0 ,7_2 1 0
+ Z _k{{‘/;m HKep}; HKep + _V;c + Z VYZ} + 0(7—]3)
i=o 12 2 t=k+1
The first term is associated with the Hg,, part of the algorithm, and the second term is
associated with the interactions between the bodies. The existence of this error Hamiltonian
is very useful because it can be used to understand some of the test results presented in this
paper and to guide us in the choice of integration parameters. For example,

(i) Because of the similarity between equation (17) and the second term in equation (35),
an analysis similar to that in § 3 shows that the potential V;;;, must satisfy the same
conditions listed in § 3.

(ii) Using equation (35), we can also confirm analytically that, for the Kepler problem, the
energy error increases with decreasing pericentric distance, as shown in the upper panel
of Figure 3. (Note that for the Kepler problem the second term in eq. [35] is zero.)
This implies that the overall timestep, 7, of the integrator should be small enough to
resolve the perihelion passage of all the objects in the system for all times. This is a
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limitation of the code that we are currently attempting to remove but we have thus
far been unsuccessful.

(iii) For a very close encounter between two bodies i and j, the relative velocity between

/2 at small rij. A scaling argument based on this

the two bodies roughly scales as rigl
assumption and equation (35) leads to the conclusion that the dominant energy error
term scales as 77 /rj; when r;; ~ Ry. Therefore, a choice of the radii, Ry, of the shells at
which the timestep is changed which satisfies the relationship Ry/Rg1 = (To/Ths1) ">

makes the energy error independent of separation.

We have implemented SyMBA in a computer code. For the remainder of this paper, we
consider a SyMBA integrator with M = 7, /7,41 = 3. We have found through experimen-
tation that the the choice of the R;’s suggested in point iii above is computationally very
expensive and is steeper than is necessary for all but the most extreme encounters. Since for
most applications, objects suffer collisions before this steep scaling is necessary, we choose
Ry /Ry+1 = 2.08, which is equivalent to the timestep decreasing as rfj/ .
experimentation, we found that R; should be ~ 3 mutual Hill radii.

Finally, through
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6. Tests of SYMBA

Testing of a code such as our SyMBA integrator is a complicated task since it is in-
tended to model chaotic systems, which do not have analytic solutions. There are no sample
problems that we can run that test all aspects of the code against exact known solutions.
Thus we pursued two separate avenues of approach to test our code: (i) The few special
cases for which there are conserved quantities were used as tests. Unfortunately, such tests
are somewhat limited. They either involve only global parameters (such as the conservation
of energy), or require very simple planetary systems (such as the circular restricted 3-body
problem). We ensure that the code conserves these quantities to high numerical accuracy in
all problems of this type that are known to us. (i7) A suite of short time duration problems
designed to test the SyMBA code was run using our code as well as several other well-
established codes. We verified that the results from our code statistically agreed with the
results from the established codes in each of these cases. We developed several tests for each
of these categories. Overall, we carefully designed and implemented tests that exercised all
aspects of the code. As an illustration, we now present the results of a few of these tests.

6.1. Binary Planets

As a very stringent test of our code, we integrated a pair of bound binary planets with
their center of mass revolving about a star. The center of mass of the binary was placed
in a 1 AU nearly circular orbit about a solar-mass star. The initial semi-major axis of the
relative orbit of the binary was 0.0125 AU and the initial eccentricity was 0.6. Each planet
had a mass of 1073 M, or about the mass of Jupiter. We integrated this system for 100
years (or about 3200 orbital periods of the binary) with a timestep of 0.01 years.

Figure 4 shows the results of this integration. The semi-major axis and eccentricity are
well behaved. The energy error is small, usually less than 107°, although there is a slight
systematic decrease over the length of the run. The separation between the binary planets
ranges from 5 x 1073 to 0.02 AU, which corresponds to k ranging from 4 to 6 in our recursion
levels.

6.2. Scaled Outer Solar System

We integrated a solar system consisting of the Sun and four giant planets, with the
masses of the planets increased by a factor of 50. We used a small timestep of 0.03 years
because the planets were so massive. It is well known that such a system is unstable and
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that the planets evolve onto crossing orbits on a short timescale (Duncan & Lissauer 1998).
Figure 5 shows the behavior of the system as a function of time. Each planet is represented
by a colored pair of curves: black, red, green, and blue represent Jupiter, Saturn, Uranus,
and Neptune, respectively. The solid curves represent the planets’ perihelion distances, while
the dotted curves are their aphelion distances. Although the planets are initially on nearly
circular orbits, their eccentricities quickly grow. At ¢ ~ 30 years, the orbits of Neptune and
Saturn become crossing, after which the evolution becomes violent. Saturn is ejected from
the system 1920 years into the simulation, while Uranus quickly follows 60 years later.

Figure 6 shows the fractional change in the energy of the system as a function of time.
Note that this value is fairly small. In addition, it seems to be oscillating around zero and
does not show a systematic growth.

6.3. The Circular Restricted 3-Body Problem

We integrated the orbits of 50 massless test particles under the gravitational forces of
the Sun and Neptune (¢ = 30 AU). Neptune was placed on a circular orbit. The initial
semi-major axes of the test particles were uniformly distributed between 36 and 40 AU.
Their initial inclinations were set at zero with respect to Neptune and their initial perihelion
distances were 30 AU. The initial Jacobi constants of these particles were such that Neptune
could not eject them from the solar system or allow them to impact the Sun since they
must remain on Neptune-encountering orbits. We stopped the particles if they came within
Neptune’s physical radius. The timestep for the integration was 2 years.

The integration lasted for 10° years, although the median lifetime of the particles was
2.9 x 10°% years. Over the integration, none of the particles were ejected from the system.
The Jacobi constant was well conserved for all the particles. Indeed, the worst case was a
variation of 1 part in 29,000.

6.4. Gravitation Focusing

Greenzweig & Lissauer (1990) performed a careful analysis of the enhancement of the
collision cross-section of planets due to gravitational focusing. They integrated the orbits
of millions of massless particles under the gravitational attraction of the Sun and a planet
using a Bulirsch-Stoer integrator. The planet was on a circular orbit of 1 AU and had a mass
of 107% M. They performed several sets of runs. For each set, the particles initially had the
same eccentricity and inclination, but had a range of semi-major axes. The inclination and
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range of semi-major axis increased as the eccentricity increased (see Table 1 of Greenzweig
& Lissauer 1990 for a complete description of the initial conditions). Since the particles in
each set had a unique eccentricity, we identify each run by its eccentricity. All particles
had semi-major axes very close to the planet and very small inclinations and eccentricities.
Indeed, in the most extreme case we study here, the semi-major axis ranged from 0.977
to 1.023 AU, the eccentricity was ~ 0.007, and the inclination was 0.2°. In addition, the
physical radius of the planet was chosen to be one of two values, Ry, = 0.1Ry ~ 10°km
and Ryny = 0.005Ry ~ 5200 km, where Ry is the Hill radius of the planet.

The orbits of the test particles were integrated through one close encounter with the
planet with a timestep of 5 x 102 years. The number of objects that impacted the planet was
recorded. Figure 7 shows the fraction of objects that impacted as a function of eccentricity
as reported by Greenzweig & Lissauer (1990) (open symbols, connected by curves) and as
calculated by SyMBA (filled symbols). The squares and circles represent the two different
values for the physical radius of the planet. Since we were limited in the number of particles
whose trajectories we integrated, error bars are shown for the SyYMBA results assuming
Poisson statistics. As the figure shows, there is very good agreement between Greenzweig &
Lissauer’s results and those using SyMBA.

6.5. The Accretion of the Moon

Ida et al. (1997) used an Aarseth-type N-body code (Makino & Aarseth 1992) to study
the accretion of the Moon after a giant impact. As a test of SyMBA, we have reproduced
a simulation which is a forerunner of those which are reported in Ida et al. (1997). The
units for this calculation were Earth mass, Roche radius, and G = 1. Thus an object with
a semi-major axis at Earth’s Roche radius, Rg, had an orbital period of 27. The particles
initially had masses that ranged from 3.2 x 107 to 3.2 x 10~ * Mg, semi-major axes that
ranged from 0.7 to 1.3 Rg, eccentricities that ranged from zero to 0.95, and inclinations that
ranged from zero to 50°. Initially there were 999 particles in the simulation. Since the DH
method does not handle orbits with small pericentric distances very well, we first removed
the 9 objects that had initial pericentric distances less than the radius of the Earth.

As a test of energy conservation, we integrated the orbits of the bodies for three or-
bital periods (67 time-units) using a timestep of 0.2. We did not allow physical collisions in
this simulation so that energy conservation could be checked. Note that the optical depth
for gravitational scattering (using a cross section based on the Hill radius of the particles)
is roughly 0.3 in this system, and many encounters happened during this short run. This
experiment most effectively tests the ability of the code to handle a large number of simul-
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taneous distant encounters. However, we estimate that encounters as close as 2% of mutual
Hill radius (or about 4% of the physical radius) occurred during the simulation. Figure 8
shows that the energy is very well conserved.

We then used SyMBA to integrate this system for 10® orbital periods, this time allowing
physical collisions. We assumed that a collision always led to a merger. The mass and the
momentum of the merger product were calculated assuming that the total mass and mo-
mentum were conserved. This is somewhat different from the assumptions in the published
paper by Ida et al. (1997), where they did not allow a merger between two objects if they
filled their mutual Hill sphere. However, the run that they supplied us was one of their
test cases where they employed the same assumptions that we did here. Figure 9 shows the
number of bodies left in the simulation as a function of time. As can be seen from the figure,
there is excellent agreement between our simulation and theirs.
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7. Concluding Remarks

The development of the highly efficient computer algorithms known as Mixed Variable
Symplectic (MVS) methods (Wisdom & Holman 1991) has allowed integrations of objects
in the solar system on timescales equal to the age of the solar system for the first time.
However, existing MVS integrators gain much of their speed advantage in cases in which the
mutual forces among the orbiting bodies are small. Thus, they cannot both maintain their
speed advantage and accurately handle a close encounter between two bodies.

We present a new symplectic algorithm that has the desirable properties of MVS meth-
ods, but can handle close encounters between massive bodies. This technique, known as
the Symplectic Massive Body Algorithm or SyMBA | is based on a variant of the standard
MVS method, with the Hamiltonian written in terms of heliocentric positions and barycen-
tric momenta. SyMBA handles close encounters by employing an improved version of the
multiple timestep technique proposed by Skeel & Biesiadecki (1994). When the bodies are
well separated, the algorithm has the speed of the MVS method, but whenever two bodies
suffer a mutual encounter, the timestep for the relevant bodies is recursively subdivided to
whatever level is required. During the encounter, the algorithm is similar to a “I'+V"’ sym-
plectic leapfrog integrator. SyMBA is symplectic and time reversible and has a surrogate
Hamiltonian that is well behaved.

Testing of a code such as our SyMBA integrator is a complicated task since it is intended
to model chaotic systems, which do not have analytic solutions. We pursued two independent
approaches to testing our code: (i) The few special cases for which there are conserved
quantities (such as the energy or the Jacobi constant) were used as tests. (i7) Published (or
about to be published) examples of more complex problems solved using other techniques
were also used as tests. We developed several tests for each of these categories, five examples
of which were presented above. In all we found that the code worked very well, as long as
the pericentric distances did not get very small. Thus, we believe that SYMBA will be a
valuable tool for the study of the late stages of planet formation.

We would like to thank M. Holman, G. Stewart, and S. Tremaine for useful discussions.
We are also grateful to J. Chambers, S. Ida, and G. Wetherill for comparison problems.
SyMBA was developed, in part, under a SwRI internal research grant. HFL is grateful to
NASA’s Exobiology, PGG, Origins, programs for funding. MJD is grateful for the continuing
financial support of the Natural Science and Engineering Research Council. MHL is grateful
for a CITA National Fellowship.
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Fig. 1.— The decomposition of the force F(r) = 1/r? into its components, F;. Components
i = 0 through 3 are shown, with R, =1 and R;/R;;1 = V2.

Fig. 2.— The fractional change in energy as a function of time for an integration of the
four giant planets with a timestep of 0.4 years. Notice that the energy error is bounded as
a result of the fact that there is a well behaved surrogate Hamiltonian for the integrations.
TOP: The integration used the MVS integrator (Wisdom & Holman 1991). BOTTOM:
The integration used the Democratic Heliocentric scheme developed here.

Fig. 3.— TOP: The maximum fractional change in energy for an integration of a system
containing only the Sun and Jupiter as a function of Jupiter’s perihelion distance. The
Democratic Heliocentric (DH) scheme was used. BOTTOM: The maximum fractional
change in energy for an integration of a system containing only the Sun, Jupiter, and Saturn
as a function of Saturn’s perihelion distance. Jupiter’s initial eccentricity was 0.05 for all
the runs. The solid and dashed curves refer to results obtained by the DH and the MVS
scheme, respectively.

Fig. 4.— The dynamical behavior of a binary planet in a nearly circular heliocentric orbit
at 1 AU. The mass of each planet is 1072 M. The TOP and CENTER panels shows the
relative semi-major axis and eccentricity of the binary orbit, respectively. The BOTTOM
panel plots the fractional change in total energy of the system.

Fig. 5.— The behavior of a system containing the Sun and four giant planets, where the
mass of the planets has been increased by a factor of 50. Each pair of color curves represent
the perihelion distance (solid curve) and aphelion distance (dotted curve) of a planet as a
function of time. Black, red, green, and blue refer to Jupiter, Saturn, Uranus, and Neptune,
respectively.

Fig. 6.— The fractional change in energy for the system whose behavior is shown in Figure
5.

Fig. 7.— The fraction of test particles that impacts a planet with a physical radius, 7phy,
as a function of the initial eccentricity of the test particles. The open symbols and curves
show the results from Greenzweig & Lissauer (1990). Two sets of runs were performed. The
first had 7pny of 0.1 of the planet’s Hill radius (Ry) and is represented in the figure by the
dotted curve and the squares. The second had 7y, = 0.005 Ry and is represented by the
solid curve and the circles. The filled symbols represent the results for the same runs using
SyMBA. Since we were limited in the number of particles whose trajectories we followed,
error bars are shown for the SyMBA results assuming Poisson statistics.
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Fig. 8.— The fractional change in total energy for an integration using SyMBA of 990 proto-
lunar objects in Earth orbit. See text for a description of the initial conditions. No physical
collisions were allowed, so energy should be conserved. An object with a semi-major axis at
Earth’s Roche radius had an orbital period of 27 in the time units used in the figure.

Fig. 9.— The number of objects remaining in a simulation of the accretion of the moon as
a function of time. The dots show the results from Ida et al. (1997), while the curve shows
the results from the same simulation using SyMBA.
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