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ABSTRACT

We have integrated the orbits of 27,700 test particles initially entering the
planetary system from the Oort cloud in order to study the origin of Halley-
type comets (HTCs). We included the gravitational influence of the Sun, giant
planets, passing stars, and galactic tides. We find that an isotropically distributed
Oort cloud does not reproduce the observed orbital element distribution of the
HTCs. In order to match the observations, the initial inclination distribution of
the progenitors of the HTCs must be similar to the observed HTC inclination
distribution. We can match the observations with an Oort cloud that consists
of an isotropic outer cloud and a disk-like massive inner cloud. These idealized
two-component models have inner disks with median inclinations that range from
10 to 50°. This analysis represents the first link between observations and the
structure of the inner Oort cloud.

Subject headings: comets: general; solar system: formation; solar system: gen-
eral; Kuiper Belt, Oort cloud
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1. Introduction

The structure of the Oort cloud, particularly the inner Oort cloud, represents a vital clue
to the formation of the Solar System. The number and orbital element distribution of comets
in the Oort cloud was determined by the planet formation process as well as the environment
in which the Solar System formed (for example see Gaidos 1995, Ferndndez 1997). Thus,
understanding the structure of the Oort cloud would put important constraints on models
of Solar System formation.

A full understanding of the Oort cloud cannot be determined by the study of long-period
comets alone. These comets, which evolve directly from the Oort cloud to the inner Solar
System, come from a region of the Oort cloud beyond 10,000 — 20,000 AU where galactic
tides are strong enough that a comet’s perihelion distance can evolve from ¢ > 30 AU
to ¢ S 1.5 AU in just one orbital period (Hills 1981; Duncan, Quinn, & Tremaine 1987
[hereafter DQTS87]). Objects interior to 10,000 AU very rarely make it directly into the
inner Solar System. However, these objects are slowly leaking into the realm of the giant
planets. Numerical simulations (Duncan, Quinn, & Tremaine 1988; Quinn, Tremaine, &
Duncan 1990 [hereafter DQT88 and QTD90, respectively|; Emel’yanenko & Bailey 1998
[hereafter EB98]) show that these objects are an important source of Halley-type comets
(those comets with orbit periods less than 200 years and with Tisserand parameters with
respect to Jupiter, T, less than 2; Carusi et al. [1987]; Levison [1996]). Thus, Halley-type
comets (hereafter HTCs) may represent our only observable link to the inner Oort cloud.

The only works of which we are aware that study the origin of Halley-type comets are
DQT88, QTDY0, and EB98. (Wiegert & Tremaine [1999] recently studied the evolution of
comets in the Oort cloud, but they followed too few objects to generate a population of
HTCs large enough to be usefully studied.) DQT88 and later QTD90 studied the origin of
the short-period comets in general, but they were mainly interested in the Jupiter-family
comets (short-period comets with 7" > 2, hereafter referred to as JFCs). They showed that
it is not possible to reproduce the very narrow inclination distribution of the JFCs from the
isotropically distributed Oort cloud comets. Indeed, the source region must be a disk, i.e.
the Kuiper belt. On the other hand, QTD90 concluded that the HTCs, being more isotropic
than the JFCs, did indeed originate in the Oort cloud. Thus, the popular wisdom for nearly
a decade has been that JFCs originated in the Kuiper belt (or now perhaps the scattered
disk; see Duncan & Levison 1997), while the HTCs were captured Oort cloud comets (see
Levison 1996 for a review).

However, a reanalysis of QTD90’s results shows that while their integrations do repro-
duce the Jupiter family from the Kuiper Belt fairly well, they do not adequately produce
the HTCs from the Oort Cloud. This is illustrated in figure 1, which compares the orbital
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element distribution of the known HTCs (the solid curve) and QTD90’s HTC model (the
dotted curve). Figures la and 1b show the cumulative semi-major axis and inclination dis-
tributions. Only objects with perihelion distances, g, less than 1.5 AU are plotted to attempt
to correct for observational incompleteness. The two distributions are significantly different.
For example, only ~ 21% of the HT'Cs in our solar system have semi-major axes inside the
orbit of Saturn, while QTD90’s simulation predicts that 64% of all HT'Cs should lie there.
In addition, QTD90’s simulation predicts an isotropic inclination distribution for the HTCs,
while the observed distribution has a median inclination of only 45°. QTD90 predicts a
significant population of HTCs with high inclinations and small semi-major axes that does
not appear to exist in nature. (Since the ‘missing’ comets have semi-major axes that are
smaller than the observed objects, they cannot be explained away by observational biases.)

While ambitious for its time, QTD90 had to make some very significant simplifications
in order to perform their simulations. They increased the masses of the planets by at least a
factor of 10 so that their comets would dynamically evolve faster. In addition, they started
their ‘Oort cloud’ comets with a semi-major axis of only 50 AU in order to increase the
capture probability. Either of these simplifications could explain the discrepancies noted in
Figure 1. Unfortunately, EB98’s simulations cannot be used to address these discrepancies,
because they almost totally ignored the inner Oort cloud and do not discuss the orbital
element distribution of their synthetic HTCs.

One possible solution to the above problem is that some of the low inclination HTCs
could actually originate in the Kuiper belt. This issue was addressed in detail in Levison &
Duncan (1997), where, using numerical integrations, they followed the trajectories of objects
from the Kuiper belt. Considering those objects with instantaneous semi-major axes inside
of 30AU and instantaneous perihelion distances less than 2.5AU, they found that in steady
state roughly 13% of them were Halley-type comets (7" < 2). Since the ratio of the number of
HTCs to Jupiter-family comets (JFCs) is roughly this number, at first glance the Kuiper belt
looks like a possible solution to the HTC inclination-distribution problem. Unfortunately,
the orbital element distribution of the HTCs produced in Levison & Duncan’s simulation is
significantly different than that observed in nature (see Levison & Duncan for a discussion).
For example, they all had low inclinations. Levison & Duncan also note that 1) all the
HTCs in their simulation were first JFCs, and 2) it takes at least 10° years and usually over
10% years to become a visible HTC after the comet first becomes visible as a JFC. Levison
& Duncan therefore conclude that the objects from the Kuiper belt become extinct before
they become HTCs. Thus, they conclude that the Kuiper belt is not an important source of
active HTCs. However, the integrations of Levison & Duncan (1997) assumed dynamically
cold initial conditions with inclinations less than 25°. We now know that the Kuiper Belt
and scattered disk (Duncan & Levison 1997) contain objects with inclinations as high as 40°.
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Although we do not believe that the inclusion of the high inclination objects will significantly
affect the above conclusions, in future work we will consider a dynamically hot Kuiper Belt
as a possible source region for HTCs.

Here we present the results of a numerical integration of the capture of Oort cloud
comets into HTC orbits using modern techniques that do not require the simplifications
used in QTDY0. Our goal is to supply constraints on the structure of the Oort cloud by
forcing our models to match the observed distribution of HTCs (corrected for observational
biases). In §2, we describe the methods used in these simulations as well as how we generated
the initial conditions. In §3 we describe the results of the integrations. In §4 we describe our
one-component model of the Oort cloud, and in §5 we describe our two-component model.
Finally, our conclusions are presented in §6.
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2. Numerical Methods and Initial Conditions

In our simulations Oort cloud comets were treated as massless test particles. Since we
do not know the structure of the inner Oort cloud, we generated the initial conditions for the
particles using the following methods. In §4 and §5, we will adjust the structure of the Oort
cloud by applying different weights to these particles. In this way, we can study how the
structure of the Oort cloud affects our results without performing a large number of separate
integrations.

The probability that a particle gets captured into a HTC-like orbit is strongly dependent
on its initial orbital elements. We wanted to insure that our results were not affected by
small number statistics or that we did not discount the importance of a region of the Oort
cloud because no particles were captured. So, we divided the Oort cloud into 36 bins in a—i—q
space and we put more particles in the bins with a small capture probability. In particular,
the semi-major axis (ag), which extended from 5000 AU to 50,000 AU, was divided into three
bins with boundaries at 10,000 AU and 25,000 AU. The inclination (iy) was also divided
into 3 bins with boundaries at 60° and 100°. Finally, the perihelion distance (o) was divided
into 4 bins with boundaries at 5 AU, 10 AU, and 20 AU.

Within each bin the orbital elements of the test particles were initially:

1. Uniformly distributed in semi-major axis.

2. Uniformly distributed in perihelion distance from g,,;, to the outer bin boundary. The
value of g,,;, is defined as follows. The overall perihelion distribution is uniform in ¢
with an inner edge intended to mimic the so-called ‘Jupiter barrier’ which constrains
any small perihelion, dynamically new long-period comet (hereafter LPC) to have
a & 20,000 AU (Hills 1981). The basic idea is that dynamically new LPCs must have
had ¢ > ¢; ~ 10 AU the last time through perihelion. (If not, the comet would have
received a kick comparable to its binding energy.) If we define Ag as the expected
change in the perihelion distance of an object in one orbital period due to galactic tides,
then (¢; — Ag) is the smallest perihelion distance that we expect a dynamically new
LPC to have. Following DQT87, the typical change in a comet’s perihelion distance,
¢, in time t is approximately

1
Ag ~ ————51Gpoq*/?a’t sin? i, 1
Vel (1)
where My, is the mass of the Sun, p, is the mean density of the galactic disk, and a and
1 are the comet’s semi-major axis and inclination with respect to the galactic plane,
respectively. We set p, = 0.1 My /pc® (we justify this value below) and 7 = 120°, which
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is the inclination of the galactic plane with respect to the ecliptic. We also set t equal to
the orbital period of the comet. So, we define the inner edge of the overall distribution
as the maximum of 0.1 AU and (¢; — Aq). Figure 2 shows (¢; — Ag), with ¢; = 10 AU.
Note that this model predicts that we should only see dynamically new LPCs with
a > 28,000 AU, while they are observed to have semi-major axes near 20,000 AU.
Nonetheless, we adopt this model since it is consistent with previous works. We will
address the sensitivity of our results to this assumption below. For each bin, g, is
the larger of (¢; — Ag) or the inner bin boundary.

3. Uniformly distributed in cosine of the inclination.

4. Uniformly distributed in argument of perihelion, w, and longitude of the ascending
node, €2, between 0 and 27.

5. Uniformly distributed in instantaneous heliocentric distance between 500 and 600 AU.
We also required that the particles were initially moving toward the Sun. From this,
we calculated the initial mean anomaly.

Initially, the relative populations of the 36 a—i—¢ bins also followed the above prescrip-
tion. However, at the end of the initial set of integrations, we calculated the number of
objects from each bin that evolved onto HTC-like orbits. We ran additional particles in
those bins for which this number was smaller than 10. In total, we integrated the orbits of
27,700 test particles.

The orbit for each test particle was integrated for up to 1 billion years or until it was
ejected from the system, hit the Sun or a planet, or evolved onto an orbit with ¢ > 45 AU,
at which point we assumed that it reentered the Oort cloud. If a particle evolved onto an
orbit with a < 100 AU it was cloned 19 times, by which we mean that we generated 19 new
particles with positions offset from the original by a random number uniformly distributed
between 0 and 10~7 AU and with the same velocities. We followed the orbital evolution of
the test particles under the gravitational effects of the Sun, giant planets, galactic tides, and
passing stars using the RMVS3 integrator (Levison & Duncan 1994). RMVS3 is based on
the fast N-body mapping method of Wisdom & Holman (1991). The orbits of the Sun and
planets were treated as a fully interacting system. We included the effects of the passing
stars using the Monte Carlo prescription developed in DQT87, which assumes the impulse
approximation. Since recent work on the galactic potential seems to indicate that DQT87’s
galactic tide model may have been too simple, we used a more sophisticated model for these
integrations.

Following Heisler & Tremaine (1986; henceforth HT86), Wiegert (1996), and Wiegert &
Tremaine (1999; henceforth WT99), we assume that (1) the Galaxy is axisymmetric and (2)
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the Sun follows a circular orbit of radius R, in the galactic midplane. The Sun’s orbital speed
and angular speed about the galactic center are respectively Oy and €2y, where Oy = Qo R,.
We treat a comet as a massless particle orbiting in the field of the Sun, the giant planets, and
the Galaxy. Consider a coordinate system centered on the moving Sun, the axes of which
remain aligned with an inertial frame. In this system, the comet’s equation of motion is

i.' = F@ + Fp "|‘ Ftide; (2)

where F, F,, and Fyi represent the accelerations due to the Sun, planets, and Galaxy
respectively.

HT86 and WT99 define a rotating rectangular coordinate system (Z, 7, Z) centered on
the Sun, such that Z points away from the galactic center, § points in the direction of the
galactic rotation, and Z points toward the south! galactic pole. The galactic tidal acceleration
is then given by

Fia. = (A— B)(3A+ B)ix — (A — B)’fiy — (4nGpo — 2(B* — A%)) 2z (3)

(HT86, Equation 6; Wiegert, Equation 3.22; WT99, Equation 18), where A and B are
Oort’s constants, pg is the density of the galactic disk in the solar neighborhood, and G

is the gravitational constant. Oort’s constants are defined as A = —(%92) R, and B =
-(Q+ %%) ro» Where € is the angular speed of galactic rotation at distance R from the

galactic center. The subscript Ry means that A and B are evaluated at R = Ry.

Substituting in Equation 3, we have

dQ ~ X ~ dQ ~
Ftide = —Qo(QQ + QROE).TX - QOny + (—4’ITGP() + QQo(QO + Roﬁ))zz (4)
If we now use % = %% — % and define the logarithmic derivative § = Z}Zggg = —ﬁfg
(Matese & Whitmire 1996), we have
N ~ ArG N
Fude = (1 — 20)3% — 3§ — (7 — 20)7). (5)

Equation 5 is identical to Equation 1 of Matese and Whitmire (1996), except that they
write 26 where we have —24 in the coefficient of the z term. However, this term is small and
we will neglect it, as did Matese and Whitmire.

'In the standard galactic coordinate system, x points toward the galactic center from the Solar System
barycenter; y points in the direction of galactic rotation; and z points toward the north galactic pole. It is
convenient to change the coordinates so that x points eaway from the galactic center and y still points in the
direction of galactic rotation. To keep the coordinate system right-handed, we must also change z so that it
points toward the south galactic pole.
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What values of the galactic constants should we use? Feast & Whitelock (1997) find
Q= A— B =27.2+0.9 km/s/kpc, while Olling & Merrifield (1998) obtain Qg = 25.9 £ 1.8
km/s/kpc. We will assume €y = 26 km/s/kpc, the same value used by Heisler & Tremaine
(1986).

Bahcall (1984) finds a local mass density p, = 0.185 & 0.02M/pc?, of which 0.096
Mg, /pc? is in visible matter (stars, gas, and dust), and an almost equal amount (0.089
Mg /pc?) is in unseen matter. DQTS87 used Bahcall’s value of py. Recent determinations
of py using Hipparcos data have been lower by about a factor of 2. These values include
po = 0.11£0.01My/pc® (Pham 1997), 0.076 +0.015M /pc® (Creze et al. 1998), and 0.102 &
0.010Mg/pc® (Holmberg and Flynn 2000). We will adopt py = 0.1My/pc®. (This value of
po implies that unseen matter contributes, at most, 20% of the local mass density.)

During the integrations the complete state of the system was saved every 10* years. In
addition, if a particle had a semi-major axis less than 100 AU and a perihelion distance less
than 3 AU, its orbital elements were saved once every 1000 years.
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3. Raw Results

As described above, we define an HTC as a comet with orbital period P < 200 years
and Tisserand parameter 7' < 2. Before we can make a detailed comparison between the
orbital element distribution of the real HTCs and our simulated HTCs, we must first correct
for the most important observational bias — the bias against the discovery of comets with
large perihelion distances. Figure 3 shows the cumulative perihelion distance distribution
for the real HTCs (dotted curve) and our simulated HTCs (solid curve), generated using
the dataset described above with the temporal resolution of 1000 years. In the figure, the
distribution of simulated comets was scaled so that the distributions had the same value at
1 AU. Figure 3 seems to indicate that the sample of observed comets is complete out to
roughly ¢ = 1.4 AU, but that there is significant observational incompleteness beyond this
point. Thus to be conservative, in what follows we will restrict our discussion of both the
real and simulated HTCs to those objects with ¢ < 1.3 AU. There are 22 comets in the
observed HTC population with ¢ < 1.3 AU.

Figures 4A and 4B show the cumulative semi-major axis and inclination distributions for
our simulated HTCs (solid) and real HTCs (dotted). The two distributions do not agree very
well. Indeed, a 2-dimensional Kolmogorov-Smirnov (K-S) statistical test (Press et al. 1992)
shows that the probability that the two distributions are derived from the same parent
distribution is 3 x 107°. The largest disagreement is in the inclinations. While the median
inclination of the real HTCs is only 45°, our simulated HTCs have a median inclination of
123°. Therefore, although most of the known HTCs are in prograde orbits, most of our
simulated comets are on retrograde orbits.

The inclination distribution of our HTCs may seem somewhat surprising because it
has been shown previously (DQTS88) that the capture probability is roughly independent of
inclination. Our results are consistent with this. Figure 5A shows the averaged binned
probability of capture into an HTC orbit as a function of the initial inclination in the
Oort cloud. The capture probability is slightly enhanced at low inclinations. In addition,
there appears to be an enhancement near 120°, which is approximately the angle between
the ecliptic and the galactic plane. We do not have good enough statistics to determine
whether either enhancement is real. Indeed, on average the probability that a prograde
object is captured onto a HTC-like orbit is (6.0 + 1.0) x 10~*, while it has a similar value
of (6.7+1.4) x 10™* for a retrograde object. We see a predominately retrograde population
(figure 4b) because the lifetimes are different. Once an object is captured, the average
length of time it survives before being removed from the system is 64, 000 years for originally
prograde orbits, but 102,000 years for originally retrograde orbits.

The K-S test apparently shows that the HTCs created during our simulation do not
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represent the observed distribution very well. However, the comparison presented in this
section does not account for various observational selection effects, the structure of the Oort
cloud, or the physical evolution of the comets. In the next section, we begin to address these
issues.

There are a couple of matters concerning the capture statistics that we must mention
before we present our analysis below. Figure 5B shows the averaged binned probability as
a function of perihelion distance. As has been seen before (Stagg & Bailey 1989; EB9S),
there is a strong enhancement of the probability of capture for objects with small perihelion
distances. Figure 6 shows an averaged binned cos(i) for the HTCs in our simulation as
a function of their initial inclinations. For reasons that we describe in detail in §5, we
calculate separately these averages for objects with a < 20,000 AU (filled circles) and those
with @ > 20,000 AU (open circles). We also plotted the standard deviation within a bin for
the data with a < 20,000 AU. Although there is a significant variation within a bin, there is
a clear trend in these data. For both regions of the Oort cloud the inclination is on average
conserved during the capture process. This is in agreement with earlier studies (DQT88,
QTD90). With this information in hand, we now discuss the results of our modeling.

4. A One Component Oort Cloud Model

In this section we construct a model of the HT'Cs that begins to account for various
physical aspects of the HTCs and Oort cloud. The observed distribution of the HTCs can
be, and most likely is, affected by observational selection effects. Besides the observational
bias against finding objects with large perihelion distances (which was accounted for above),
there most likely is a bias against discovering objects with large semi-major axes and/or
inclinations near 90°. In addition, comets age and become extinct. Thus, dynamically old
comets are unlikely to be discovered. Another issue that we begin to address in this section
is the structure of the Oort cloud itself.

To address the above issues we have constructed a series of experiments with the data
described in the last section. Periodically, as we followed the trajectory of our particles,
we recorded their instantaneous orbital elements. We used this data set to construct Fig-
ure 4. Here, for each entry in this data set, we calculate the likelihood that we should
actually discover a comet in this orbit based on its current orbital elements and its initial
orbital elements in the Oort cloud. We use the following prescription for calculating these
probabilities.

As discussed above, the observed HTC population may suffer from both inclination
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and semi-major axis biases. The inclination bias should be a function of sin (i) and thus is
symmetric about ¢ = 90°. Thus, inclination biases cannot alleviate the discrepancy in the
median inclinations described above, so they are not included in our first modeling attempt.
This issue is visited again below.

Since many of the HT'Cs have been discovered within the last few decades and HTCs
can have orbital periods longer than this, the probability that a comet is discovered depends
on its semi-major axis. Indeed, it is simply proportional to the probability that it has passed
through perihelion during the time that the searches have been active. Thus, we define a
free parameter for our model, Py, that represents this length of time (or more precisely a
weighted mean of these times for various observing techniques, including corrections for sky
coverage, lunar phases, cloudy weather, and the like). Thus the probability that a comet
has been discovered is

P.4/P if P > P,,, (6)

where P is the orbital period of the comet.

{1 if P< Py
pbp =

There is significant evidence that comets physically age and become extinct or disinte-
grate. These range from the study of individual objects like comet 107P = asteroid (4015)
Wilson-Harrington (Bowell et al. 1992) to statistical arguments based on observed orbital
element distributions (Weissman 1980; Levison & Duncan 1997; Wiegert & Tremaine 1999).
The physical aging of a comet is usually expressed in terms of the number of perihelion
passages it has undergone. Thus, we define N, as the number of perihelion passages with
g < 2.5AU that a comet undergoes before becoming extinct. This will be a free parameter
in our models.

Finally, we make a first attempt at including structure in the Oort cloud. Since the ob-
served distribution of HTCs is more prograde than predicted we flatten the initial inclination
distribution. We take the probability that a particle that was in our original distribution is
in our model distribution as

Pio = (% + %COS (i0)>7, (7)

where iy was the comet’s initial inclination in the Oort cloud and 7 is a free parameter. For
convenience, we will represent this function with its median inclination, ', rather than -.
Figure 7 shows several examples of the Oort cloud inclination distributions generated by this
function.

Thus our model contains three free parameters: P, N,;, and i'. To evaluate this
model, we first generate a series of predicted HTC a— distributions for each value of these
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parameters by calculating the probability, p, that each of our fictitious HT'Cs is in the model:

_ {pp X pijo if comet has had fewer than N, perihelion passages with ¢ < 2.5 AU.
b= 0 otherwise.

(8)
We then construct a model using Monte Carlo techniques. Finally, we then employ the
2-dimensional K-S test to determine whether this model is a reasonable representation of
the data. We chose values of P.,; between 20 and 200 years with a resolution of 10 years,
values of IV, between 5 and 63000 with a spacing in log (/NV,) of 0.3 (roughly a factor of 2),
and values of ¢’ between 10 and 90° with a spacing of 10°.

The best fit model occurs for values of P,,; = 50 years, N, = 8000, and 7' = 50°. Figure 8
compares the cumulative semi-major axis and inclination distributions of this model (solid
curves) and the observed HTCs (dotted curves). There is indeed excellent agreement between
the two distributions. Thus, as a first step in our analysis, we conclude that we can construct
reasonable models for the HT'C distribution.

We can investigate the range of good models by studying contour plots of K-S test
probability, pxs, as a function of our free parameters. To be precise, pxg is the probability
that the two populations derive from the same parent population. Figure 9 shows two slices
through our 3-dimensional parameter space. These slices were chosen so that they contain
our best fit model. The contours in Figure 9A show pgg for our N, = 8000 models as a
function of i and P,,;. There is a relatively sharp peak centered on our best fit model with
a rapid falloff with both " and P,,;. Other slices at different N, look similar to this plot, but
the center of the peak is a function of N,. For small values of N, the peak is further to the
left on the diagram. Also the height of the peak decreases with smaller IV,. For larger values
of N, the height of the peak also decreases and moves to the lower right in the diagram.

Figure 9B shows pkg as a function of N, and P, for ' = 50°. Note that P, and N,
are not well constrained. There is a region with P.,; < 90 years and 5000 S N, S 20000 in
which very good models occur.

If we look at all of our models and define a ‘reasonable’ model as one with pxg > 0.25,
we find that we cannot constrain P,,; at all. There are models with pxs > 0.25 for any
value of P, < 170 years. However, we find that N, must be greater than 3000 returns.
Models with N, < 3000 tend to contain HTCs with semi-major axes which are larger than
is observed. A large N, implies that there is very little physical evolution of the comets once
they become HTCs. Before they evolve onto HTC orbits, we find that more than 94% of our
comets suffer more than 100 returns and 50% suffer more than 500 returns. Thus, we find
no significant physical evolution between a few hundred and a few thousand returns. Note
that these models do not place any constraints on the physical evolution of comets before
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they become HTCs, nor on those that do not become HTCs. Our results are consistent with
previous estimates of the physical evolution of long-period comets, which find that although
most comets fade rapidly, those that survive more than ~ 6 perihelion passages typically
remain active for many orbits thereafter (Weissman 1979; 1980; Wiegert & Tremaine 1999).
We return to this issue below.

Formally, 20 < i’ < 70°. Indeed, the largest pxs for a model with i = 90° (an isotropic
distribution) is 0.03. Thus, we can conclude with some confidence that an isotropic Oort
cloud cannot produce the Halley-type comets that are currently observed. A flattened dis-
tribution is required.

In order to test whether inclination biases could affect these conclusions, we generated
a series of models similar to those above, but we added an extreme version of this bias. If
HTCs were discovered during an observing campaign that only searched near the ecliptic,
then the probability that a comet is detected is proportional to the fraction of time it spends
near the ecliptic>. This probability is proportional to 1/sin (¢). However, this is only true
for inclinations larger than the height above and below the ecliptic that the search covers.
For inclinations smaller than this, the probability is uniform. Thus, we set the probability
that a comet is discovered to

g if i < 10° o)
Pi= A sin (10°)/sin (3) if i > 10°,

The largest pxs for model with ¢/ = 90° is 0.03. Therefore, we can rule out the isotropic
models. The best fit model has ¢/ = 65°, which is somewhat larger than the best fit model
without the inclination bias, but is consistent with the range of i’ derived from the previous
models.

The models above seem to indicate that an isotropic Oort cloud cannot be the source
of the HT'Cs and that a flattened distribution with a median inclination similar to that of
the observed distribution (45°) is required. We can understand this result by going back to
Figure 6. Recall that this figure shows that the inclination of comets is roughly conserved
during the capture process. This implies that the inclination distribution of the source
region must be roughly similar to the inclination distribution of the HTCs. However, the
capture probability must be taken into account in this argument. So to be more precise,
the inclination distribution of the Oort cloud multiplied by the probability of capture (as

2HTCs were not, in general, discovered in this way; thus the real bias is less severe then that assumed
here. Indeed, Everhart (1967) estimated that only roughly 10% of the high inclination LPCs should be lost
due to observational biases. HTCs should have similar biases since they were, in general, discovered with
similar techniques.
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a function of initial orbital elements) must be approximately the same as the inclination
distribution of the HTCs. This becomes an issue in the next section.

5. A Two Component Oort Cloud Model

There is another set of observations that we have not yet considered that also must be
taken into account. The dynamically new long-period comets are arriving from the Oort
cloud and directly measure the inclination distribution of the Oort cloud for a & 20,000 AU.
This inclination distribution is nearly isotropic, apparently at odds with our result from
above that the source of the HT'C must be flattened. One possible solution to this problem
is to have an Oort cloud that is isotropic in its outer regions, but is flattened in its inner
regions. Such a structure has been suggested previously (DQT87). However, the HTCs
may be supplying us with direct evidence for such a structure. Therefore, in this section we
expand our model of the Oort cloud to include an inclination distribution that varies as a
function of semi-major axis. This model includes the three free parameters in the models
above: 7', P,;, and N,. In addition, we add an additional parameter that represents the
2-component structure of the Oort cloud.

We assume that the inner part of the Oort cloud is represented by a flattened population
with an inclination distribution given in Equation (7) with ¢’ being a free parameter. The
outer part of the Oort cloud is assumed to be isotropic. Since the observed inclination dis-
tribution of long-period comets (hereafter LPCs) is isotropic, we assume that the transition
between these two regions is at a = 20,000 AU, which roughly corresponds to the inner edge
of the population of the dynamically new long-period comets. We vary the mass ratio be-
tween the inner and outer regions. Since we are constructing a Monte Carlo simulation based
on the integrations above, we accomplish this by only including a fraction of the particles in
the outer region. This fraction, we,;, is the additional free parameter for our models. The
inverse of w,,; is an enhancement factor which gives the ratio of the mass of the inner disk
in the two-component model to the mass of the inner disk in the one-component model with
the same 7’ (§2).

Therefore, we have 4 free parameters to vary. As with the model in §4, we generate
a series of experiments with various values of these parameters and compare the resulting
HTC a—i distribution with the observations. The parameters ¢, P, and N, are sampled
the same way as with the one-component models. We chose values of w,,; between 0.001
and 1 with a spacing in log (wey) of 0.4 (roughly a factor of 2.5). The lower limit of w,y;
is set by a limitation in the integrations: below this value, small number statistics start to
dominate our results.
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Determining the range of parameters that produce viable models is more difficult than
for the one-component models above because many of the two-component models only have
a few tens of comets in them. Because of small-number statistics, there can be a large range
of different Monte Carlo representations for each set of parameters. We first attempted
to combine a number of different Monte Carlo realizations of a given model and then do
a K-S test on the combined model. However, when we constructed the models, we found
that the same particle could be included more than once, often many times. This caused
the K-S probability to be artificially small, so that the valid models were incorrectly re-
jected. Therefore, we developed the following procedures for determining which models are
reasonable.

We first reject any model with pxg < 0.05. For each model with larger px g, we generate
an additional 6 Monte Carlo realizations and compute pggs for each of the 6 a— distribu-
tions. Define (p) as the average of the 6 pxg’s. In order to calculate the significance level
corresponding to (p), we perform the following experiment for each set of parameters. 1)
We generate a realization of the model that contains the same number of comets (22) as
the observed HTC population with ¢ < 1.3 AU. We use this as our control sample. 2) We
calculate a parameter (p.) using the above procedures for (p) but using our control rather
than the real HTCs. Note that the control is generated by the same model as the 6 real-
izations used to calculate (p.). 3) We repeat steps (1) and (2) 200 times. The resulting 200
(pc)’s represent the distribution that we expect if the two distributions were derived from the
same parent distribution. Therefore, we define our confidence level, c, as the fraction of the
(pc)’s that are less than (p). Again, we performed this calculation for each of our candidate
models.

The model with the largest c is

o i =20°

e P.,; = 30 years.

e N, = 5000 passages.
® Wy = 0.001.

e ¢c=10.6.

Figure 10 shows the cumulative semi-major axis, inclination, and perihelion distance dis-
tributions of this model. The semi-major axis and perihelion distance distributions match
the observations fairly well. However, the model’s inclination distribution is slightly more
isotropic than the observed distribution. In particular, the median inclination of this model
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is 53°, while the real HTCs have a median inclination of only 45°. The fact that c is large
indicates that this discrepancy could be due to small number statistics. Recall that there
are only 22 known HTCs in our sample. In addition, perhaps a better agreement could be
found if we allowed for smaller values of w,,; (see below).

If we define a reasonable model as one with ¢ > 0.1, then we can constrain the values
of our free parameters to:

10° < ¢ <50°

P,.; is not constrained.

N4 > 5000 passages.

e 0.001 < wyy <0.16.

Figure 11 shows a contour plot of a ‘projection’ of the ¢ distribution in #'—w,,; space, which
are the two parameters that represent the structure of the Oort cloud. By ‘projection’ we
mean that for each value of i' and wyy;, we took the maximum value of ¢ along the other
parameters. There is a peak centered on our best fit model at ' = 20° and w,,; = 0.001,
with a shallow falloff away from the peak. The best fit models have 15° < ¢/ < 30°, although
i’ can be as large as ~ 50°.

Although from Figure 11 we find that w,,; can be as large as 0.15, the best fit models
have wyy; S 0.001. This result indicates a fairly massive inner Oort cloud relative to the
outer cloud. Indeed, the fact that the peak of the distribution lies at the lower limit of the
figure suggests that we would achieve better fits if we could use smaller values of w,,;. The
need for a massive inner Oort cloud can be understood using the following argument.

The primary result of the models presented in §4 was to show that the inclination
distribution of objects entering the planetary region from the Oort cloud must be similar to
the inclination distribution of the HTCs. Recall that in our initial model of the Oort cloud,
we included the effects of the Jupiter barrier by truncating the inner edge of the initial
perihelion distribution at different locations depending on the semi-major axis (see Eq. 1).
Particles from the inner regions of the Oort cloud therefore all had large initial perihelion
distances. Figure 5B shows the averaged binned probability as a function of perihelion
distance. Objects with large perihelion distances are much less likely to get captured than
objects with small perihelion distances. Thus, in our model, objects from the inner cloud
are less likely to be captured than objects from the outer cloud. It then follows that the
inner cloud must be massive in order to supply enough comets to reproduce the HTCs’
inclinations.
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Unfortunately, it is difficult to interpret the exact meaning of w,,;. It is not trivial
to estimate the mass of the inner cloud because it is dependent on the rate at which Oort
cloud comets evolve onto orbits that enter the planetary region. This, in turn, is dependent
on the exact semi-major axis and perihelion distance distributions in the cloud. Perhaps a
more fruitful approach is to estimate the expected number of long-period comets from our
models because that requires us to make the fewest assumptions. We can then compare this
prediction to observations.

There are 22 observed HTCs with ¢ < 1.3 AU. However, this is an underestimate due to
observational selection effects. We can correct for the effects of P,,; in this distribution by
scaling each comet with an orbital period greater than P,.,; by P/P,,;. We call the resulting
estimate Ngrc,4, which is 57 for our best fit model above (P,,; = 30 years). Note that this
represents active comets only.

We can use our model to estimate the average lifetime of a HTC, Lgrc. To be more
precise, Lyrc is the average length of time that a comet is an active HTC with ¢ < 1.3 AU.
For our best fit model Lgy7¢ = 75,000 years. This number takes into account the dynamical
evolution of HTCs as well as their physical evolution (through N,). The rate at which new
HTCs are created in this model is Ryrc = Ngrc,e/Lurc, which is 7.6 10~* comets per
year.

We can also use our model to estimate the probability that once an Oort cloud comet
enters the planetary system from the Oort cloud, it will become an HTC with ¢ < 1.3 AU.
For our best fit model, p = 1.6 x 10~*. The rate at which Oort cloud comets must be entering
the planetary system is therefore Roo,t = Rurc/p, which is 4.9 comets per year in our best
fit model.

The above estimate is for all comets from the Oort cloud entering the planetary system,
independent of the comet’s perihelion distance. However, we have built into our models a
perihelion distribution for objects first entering the planetary system (see §2 and in particular
Figure 3). The distribution will be somewhat modified by our choice of wyy;. In our best
fit model, the fraction of new comets entering the planetary system with ¢ < 1AU, f,, is
1.4 x 1073,

Therefore, we can predict the expected rate of LPCs with ¢ < 1AU to be Rppc =
Roort fq, which is ~ 0.006 dynamically new comets per year in our best fit model. Indeed,
applying this argument to all models with ¢ > 0.1, we find that 0.0012 < Rppc < 0.015.
Wiegert & Tremaine (1999) argue that in the Solar System there are roughly 12 dynamically
new comets per year with ¢ < 3 AU, which implies ~ 4 per year with ¢ < 1 AU (also see
Weissman 1985). There is a discrepancy of over two orders of magnitude between our model
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predictions and the observations! This is consistent with a previous study of the HTCs by
Emel’yanenko & Bailey (1998).

There are large uncertainties in the above estimates of Ry pc due to the assumptions in
our models. Our most severe assumption is our adopted initial perihelion distribution for the
comets, see §2 and Figure 2. In order to test the sensitivity of our results to this assumption,
we constructed a model that has the same ', N,, and P, as our best fit model, but a
different initial perihelion distribution. We chose ¢; = 6 AU and set p, = 0.22 M /pc® so
that (¢; — Aq) = 1 AU for a = 20,000 AU. Since the fraction of the model’s particles initially
beyond 20,000 AU is a function of both w,,; and the initial ¢ distribution, we adjusted wo;
to 0.002 so that this fraction was preserved. For this model Ry pc = 0.009, similar to the
value for our best fit model. So, changing our initial perihelion distance distribution will not
solve the inconsistency between our model and the observed LPCs. Indeed, we have found
that it is not possible to solve this inconsistency by adjusting any of our parameters, even
to extreme values.

Is it possible to reconcile our models with this low predicted rate of long-period comets?
Another way to view this problem is that given the observed rate of LPCs, we would expect
to see about two orders of magnitude more HTCs than are actually observed. One possibility
is that over 99% of the comets from the Oort cloud become extinct or disintegrate before they
can become HTCs. Figure 12 shows the cumulative distribution of the number of perihelion
passages less than 2.5 AU that a comet has suffered in our best fit model. If we are to argue
that only 1 comet in 100 remains active until it becomes a HTC, then from the figure this
fading must occur before a comet suffers 230 perihelion passages (1% of comets in the model
have suffered fewer than 230 perihelion passages). In fact, the die-off must have occurred
much earlier than that if we require that it not affect the observed HTC distribution. Given
this argument and the large IV, of our models (which suggests very little physical evolution
of comets as HT'Cs), the most plausible conclusion is that most comets fade or disintegrate
during their first few passages and the remainder are unchanged for long periods of time.

Indeed, there is observational evidence for such fading in the orbits of the LPCs them-
selves. Over the years, many researchers have modeled the dynamical behavior of dynam-
ically new long-period comets as they evolve (Oort 1950; Whipple 1962; Weissman 1980;
Wiegert & Tremaine 1999)%. They have always found that the ratio of the number of ‘re-
turning’ comets to the number of dynamically new comets in their models is significantly
larger than observed. Despite valiant efforts to explain this discrepancy with dynamics alone,

3To be more precise, the efforts have concentrated on what Levison (1996) calls ‘external’ comets. Halley-
type comets are usually not considered.
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it was found that the only way to change the models so that they match the observations is
to allow the comets in the models to physically age. That is, comets must fade and become
extinct (or disintegrate) as a function of time. The most recent attempt at this (Wiegert &
Tremaine 1999) found a good match if: (1) the fraction of comets remaining visible after m
apparitions is proportional to m? where f = —0.6 & 0.1, or (2) if ~ 95% of comets live for
only ~ 6 returns and the remainder last indefinitely (also see Weissman 1980).

Our models of the HTCs are consistent with these ideas. Perhaps, however, we need
a somewhat steeper fading law. For example (1) predicts that 4% of the comets should
remain after 230 apparitions, while we require less than 1%. If we assume that we require
1% after 200 apparitions, we find that 8 ~ —0.8. This number is very uncertain, since it
most likely depends on the exact semi-major axis and perihelion distance distributions of
the Oort cloud.

Another interesting question is whether objects from the Oort cloud (particularly the
inner Oort cloud) can be contributing to the Jupiter-family comet (JFC) population (those
comets with Tisserand parameters between 2 and 3, see Levison [1996]). These objects
typically have orbit periods less than 20 years and very small inclinations. We can estimate
from our models the fraction of active comets with ¢ < 1.3 AU and a < 34 AU that are JFCs,
frrc. Since our models have observational biases built into them in the form of P,,;, we can
directly calculate the expected number of active Oort cloud JFCs from the observed number
of HTCs. We find that 0.04 < f;rc < 0.23 for models with ¢ > 0.1, with a median value of
0.1. Our best fit model has f;rc = 0.15.

As discussed above, there are 22 known HTCs with ¢ < 1.3 AU, which implies that we
may expect that between 1 and 5 active JFCs with ¢ < 1.3 AU originated in the Oort cloud.
The median value is 2 comets and our best fit model predicts 4 JFCs. There currently are
32 known active JFCs with ¢ < 1.3 AU. So, although we do not expect Oort cloud comets
to dominate the JFC population, several of the known JFCs may have originated in the
Oort cloud. However, the orbital elements of the JFCs produced in our models are usually
different from those of the observed JFCs. For example, the median Tisserand parameter,
T, of the observed JFCs is 2.8, while only 5% of the JFCs produced in models with ¢ > 0.1
have T" > 2.8. Thus, if the Oort cloud does contribute to the JFCs, it mainly contributes to
the outliers of the population.

Along similar lines is the issue of whether objects from the Oort cloud can be contribut-
ing to the Centaur population. Centaurs are usually large (diameters larger than ~ 50km),
inactive objects found in the outer solar system. As such, activity is not a requirement for
their discovery as it is for the JFCs and HTCs. In addition, Centaurs do not suffer from
the same observational biases as the comets and thus we will ignore P.,; in the following
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estimate. Therefore, we will be estimating the total number of Centaurs that originated in
the Oort cloud as opposed to the number that we have observed. Also, we are assuming that
the ‘fading’ described above is due to objects becoming extinct rather than disintegrating
and thus there is no loss as objects become Centaurs. Again, we will use our best fit model.

As discussed above, we estimate that Nyrc, = 57 for our best fit model. This number
refers to active comets only. We can crudely estimate the fraction of comets that are active
by taking the ratio Rppc from our models to that derived from the observations, which is
(see above) 0.006/4 = 0.0015 = 7, for our best fit model. We also estimate in our models
the fraction of objects with a < 34 AU that have ¢ < 1.3AU, r,. For our best fit model
7, = 0.0022. Thus, our best fit model contains Ngrc = Nurc,e/(Tacary) = 1.7 x 107 objects
with a < 34 AU. Applying this argument to all our models with ¢ > 0.1, we find that
105 < Nyre < 2 x 108. This can be compared to an estimate of roughly 10® objects in
the same region of the solar system from the Kuiper belt (Levison & Duncan 1997; call this
value Nip). These values of Nyr¢ refer to objects with diameters larger than roughly 1km.

Is it reasonable to suppose that the Oort cloud is supplying a significant fraction of the
Centaurs? A defining characteristic of the Centaurs is their inclination distribution. The
average cos(i) of 13 multiple opposition Centaurs with a < 34 AU is 0.97, which corresponds
to an inclination of ~ 14°. Furthermore they all have inclinations less than 25°. The average
cos(7) if the same population as predicted by our best fit model is 0.84, which corresponds to
1 = 33°. Although we believe that this difference is significant, a direct comparison is difficult
because of the observational bias in the observed distribution. Although the inclination bias
is not significant for the HTCs (Everhart 1968), it is significant for the Centaurs because
many were discovered during searches for Kuiper belt objects, which suffer from these biases
(Jewitt et al. 1996).

Another comparison can be made with the eccentricities of these objects. In order
to remove the most important observational bias, that with respect to perihelion distance,
we will only consider those objects with 5 AU < ¢ < 10 AU and a < 30 AU. The observed
multiple opposition Centaurs that meet these criteria have a mean eccentricity of 0.47+0.03.
The models of Levison & Duncan (1997) predict € = 0.50 for this subset of the Centaurs.
For our best fit model, € = 0.61. So both from the inclination and eccentricity distributions
it is unlikely that the Oort cloud is the dominant source of the Centaurs.

So, how do we reconcile the inclination distribution with our conclusion that by numbers
the Oort cloud should be the dominant source of the Centaurs? There are several reasons
why our estimate for Ngrc could either be too large or not relevant to the larger Centaurs.
i) The value of Ny is very sensitive to the assumed fraction of new comets entering the
planetary system with ¢ < 1AU, f,, which is an input into our models (see Equation 1
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and Figure 2). For example for our best fit model, f, = 1.4 x 10~®. The assumption that
would maximize f, would be to take a uniform perihelion distance distribution. In this case
fs = 3 x 1072 and Ngrc decreases by a factor of 20. 4i) The above comparison between
Ngrc and Ngp is for comet-size objects not the larger Centaurs. If objects originating
in the Oort cloud had a much steeper size distribution than Kuiper belt objects then it is
possible that the Kuiper belt could be the dominant source of the observed Centaurs. iii)
In calculating Ngrc we assume that when objects fade they become extinct and do not
disintegrate. If these objects disintegrated, they would not become Centaurs. However,
although disintegration seems a reasonable mechanism for small comet-sized objects, it does
not seem as likely for objects as large as the observed Centaurs. Clearly the issue of Centaurs
is an important one for the viability of the models presented here. We will investigate them
more in a future manuscript.

One possible solution to the above difficulties is to decouple the current flux of LPCs
from the current number of HT'Cs and Centaurs. This could happen during a comet shower
(Hills 1981; Heisler & Tremaine 1986; Heisler 1990). For example, one could imagine that at
the beginning of the shower, the influx of LPCs is increased before the number of HT'Cs and
Centaurs could be affected. If we lived during such a period, we would see an enhanced LPC
flux compared to the HTC population, which is consistent with observations. However, there
is a major problem with such an idea. At early times of a shower the LPC population will not
be isotropic. Indeed, it takes roughly 3-5 million years for the LPC population to become
isotropic after the start of a shower (Heisler et al. 1991; Weissman 2000; pers. comm.). On
the other hand, the median age (time since a comet first penetrated the planetary system)
of the HTCs in our best fit model is also 3 million years. Thus, it is unlikely to see both
an enhancement in the LPC flux compared to the HTC population and an isotropic LPC
population as observed today. We will investigate the role of a time varying flux in future
works.

We now return to some dynamical considerations. Objects in the inner Oort cloud
have initial perihelion distances beyond Saturn and initial semi-major axes which imply that
galactic tides alone cannot bring them into the inner Solar System. It is thus interesting
to investigate the dynamical pathways these comets follow to become HTCs. We find that
there are three distinct dynamical mechanisms that can be responsible for this evolution,
which are illustrated in Figure 13. Roughly 70% of the objects from a flattened inner Oort
cloud that evolve to small-perihelion HTCs are brought into the planetary region due to the
effects of the giant planets (primarily Uranus and Neptune). Figure 13A shows a typical
trajectory. The object initially is on an orbit with a perihelion distance near the orbit of
Uranus. Gravitational encounters with Uranus cause a random walk in semi-major axis. In
this case the object’s a decreases while ¢ remains constant until it reenters the planetary
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system. After a drops below ~ 30 AU, Uranus hands the object off to Saturn, which in turn
hands it to Jupiter. Jupiter then scatters the object into the inner Solar System.

Figure 13B shows another possible trajectory. This particle initially has a perihelion
distance beyond Saturn. However, at 8 x 10° years, a passing star of 0.5 Mg and an impact
parameter 74,000 AU lowers its perihelion to inside Jupiter’s orbit. Note that the particle’s
semi-major axis is constant during the encounter. Jupiter then scatters the object into the
inner Solar System. So, although on average galactic tides dominate the evolution of ¢ of
Oort cloud comets, for some objects rare passing star events can be the most important
perturber.

The last important dynamical process is illustrated in Figure 13C. The object has an
initial perihelion distance of ~ 20 AU. Repeated encounters with Uranus cause a random
walk in semi-major axis. At about 4 Myr the semi-major axis is kicked to above 15,000 AU
where galactic tides become important. As a result, the perihelion distance starts to slowly
decrease. This is accelerated when the semi-major axis increases to 20,000 AU. The object
evolves onto a Saturn-crossing orbit due to the tides, after which the object is drawn into
the planetary system and evolves into a small-perihelion HTC.

Finally, these three processes can combine in order to produce HTCs. The object
shown in Figure 13D is a typical example. Here the object had an initial perihelion distance
near Uranus’ orbit. The same passing star responsible for the behavior seen in Figure 13B
lowers this particle’s perihelion to just inside Saturn’s orbit. The particle encounters Saturn,
causing a random walk in semi-major axis. During this time the semi-major axis gets as
small as 2700 AU. At roughly 2 Myr, the semi-major axis becomes 29,000 AU, after which
galactic tides become important and g evolves inward, until at ~ 6 Myr it is at ~ 2.5 AU.
A stellar encounter then lowers its perihelion distance to ~ 0.8 AU. Note that the object’s
semi-major axis is still 29,000 AU, so the particle is now considered a dynamically new long-
period comet. Multiple encounters with the planets then draw the comets into an HTC
orbit.

The behavior illustrated in Figures 13C and 13D raises an intriguing possibility — a
significant fraction of the dynamically new long-period comets could originate in a flattened
inner QOort cloud. In this scenario, the perihelia of objects originally with semi-major axes
significantly less than 20,000 AU and with modest inclinations evolve into the realm of the
giant planets. Gravitational interactions with the giant planets raise the semi-major axes of
these objects beyond 20,000 AU, where galactic tides or passing stars can inject them into
visible (¢ < 2.5 AU) orbits in one orbital period. We believe that this may be an important
process. However, the difficulties associated with the fading problem described above make
it extremely difficult to quantify its importance.
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6. Conclusions

Previous models (e.g., DQT88) of the formation of HTCs have failed to reproduce the
observed inclination distribution, which has a median inclination of only 45°. These models
have assumed an isotropic Oort cloud. This discrepancy raises the intriguing possibility that
the study of the HTCs may allow us to probe the structure of the Oort cloud — particularly
the inner Oort cloud which does not directly produce visible comets.

We have integrated the orbits of 27,700 test particles initially entering the planetary
system from the Oort cloud, under the gravitational influence of the Sun, giant planets,
passing stars, and galactic tides. The particles were initially distributed roughly uniformly
in semi-major axis and cosine of the inclination. The perihelion distribution is constructed
to account for the so-called ‘Jupiter Barrier’ (see §2 for details). The orbit of each particle
was integrated for up to 1 billion years or until it was either ejected from the system, hit the
Sun or a planet, or evolved onto an orbit that no longer entered the planetary region. We
found that the resulting HTC population is inconsistent with the observed distribution.

We have adjusted our assumed structure for the Oort cloud by selecting particles in our
simulations based on their initial orbits. In addition, we have included the effects of phys-
ical aging and observational biases by removing particles based on their osculating orbital
elements. We found that in order to match the a—i distribution of the HTCs, the initial
Oort-cloud inclination distribution of the comets that become HTCs must have a median
inclination, 7', less than 70°, with the value most likely near 50°. This is because we find
that, on average, the inclination of comets is roughly conserved during the capture process.
Thus, the inclination of the HT'C comets when they were in the Oort cloud must be similar
to the observed population.

We constructed 2-component models of the Oort cloud with an isotropic outer cloud
and a disky inner cloud. The transition region was set to 20,000 AU. Our best fit model had
7' = 20° for the inner disk. We found, however, that i < 50°. All these models required an
inner Oort cloud that was significantly more massive than a cloud with a distribution that
is uniform in a. This is due to the fact that objects from the inner cloud were less likely to
be captured than objects from the outer cloud. So we must have a massive inner cloud to
supply enough comets to produce an inclination distribution similar to what is seen. This
model also predicts that some of the Jupiter-family comets could have originated in the Oort
cloud.

Our models predict too few observed HTCs compared to the observed number of dy-
namically new long-period comets. This inconsistency is most likely related to the well-
known ‘fading problem’ for long-period comets (Oort 1950; Whipple 1962; Weissman 1980;
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Emel’yanenko & Bailey 1998; Wiegert & Tremaine 1999). Our models appear to require
a steeper fading law than has been previously suggested. These models also appear to be
producing a Centaur population that is inconsistent (in numbers and orbital elements) with
the observed population. We will investigate this in future works.
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Fig. 1.— A comparison between the cumulative orbital element distributions of the observed
HTCs (dotted curve) and those produced in the models of QTDI0 (solid curve). A) The
semi-major axis distributions. B) The inclination distributions.

Fig. 2.— Our initial perihelion distance distribution is uniform with a minimum set by
the ‘Jupiter Barrier’ (see text for a description). This figure plots this minimum perihelion
distance, which we define as 10 AU — Aq. Agq is a function of semi-major axis and is defined
in Equation 1.

Fig. 3.— A comparison between the cumulative perihelion distance (¢) distributions of the
observed HTCs (dotted curve) and those produced in our raw integrations (solid curve). We
conclude from this that the discovery probability is independent of ¢ for ¢ < 1.3 AU.

Fig. 4.— A comparison between the cumulative orbital element distributions of the observed
HTCs (dotted curve) and those produced in our raw integrations (solid curve). A) The semi-
major axis distributions. B) The inclination distributions. Note the significant disagreement
in the inclination distributions.

Fig. 5.— The averaged binned probability that an object is captured into an HTC orbit as a
function of its initial orbital elements in the Oort cloud. The errorbars are assuming Poisson
statistics. A) Initial inclination. Note the slight enhancements at low inclinations and near
120°. B) Initial perihelion distance. There is a significant enhancement at small perihelion
distances.

Fig. 6.— The averaged binned cosine of the inclination of particles in our integration when
they are on HTC orbits as a function of their initial inclination in the Oort cloud. We divide
our particles into two groups. One group has initial semi-major axes (a) less than 20,000 AU
(filled circles) and the other has a > 20,000 AU (open circles). The ‘error bars’ show the
magnitude of the standard deviation in each bin.

Fig. 7.— Our assumed initial cumulative inclination distribution for flattened parts of the
Qort cloud. The four curves show this distribution for different values of the median incli-
nation, 7.

Fig. 8.— Same as Figure 4 but for our best fit one component model. This model has
i' = 50°, Py = 50 years, and N, = 8000. Note that the model is a good representation of
the data.

Fig. 9.— Contours of pxs for our one component models. These models have three free
parameters: i, P, and N,. Two slices through this three dimensional space are shown. A)
N, = 8000 B) ¢ = 50°.
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Fig. 10.— A comparison between the cumulative orbital element distributions of the observed
HTCs (dotted curve) and those produced in our best fit two component model (solid curve).
This model has i’ = 20°, P,,; = 30 years, N, = 5000, and we,; = 0.001. A) The semi-major
axis distributions. B) The inclination distributions. C) The perihelion distance distributions.
Note that the model is a good representation of the data.

Fig. 11.— Contours of ¢ for our two component models projected along the two axes P,
and N,. By projected we mean that for each value of w,,: and ¢, we plot the maximum
value of c.

Fig. 12.— The cumulative distribution of the number of perihelion passages less than 2.5 AU
that a comet has suffered in our best fit two component model. A particle is represented in
this distribution with its instantaneous value whenever it is an HTC.

Fig. 13.— The temporal behavior of 4 particles from our simulation that become HTCs. The
solid curves show the semi-major axes while the dotted curves show the perihelion distances.
See text for details.
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