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ABSTRACT8

The signatures of waves are seen during many high-quality ground-based refractive stellar occulta-9

tions by solar system atmospheres. We present a new forward-modeling technique for ground-based10

stellar occultations based on wavelet decomposition. If profiles of refractivity are written as the prod-11

uct of an exponential and a wavelet decomposition, then we can analytically write the profiles of the12

bending angles and the bending angle derivatives that are needed to calculate occultation light curves.13

Requiring that the atmosphere is statically stable places limits on the amplitudes of atmospheric waves14

and their effect on the observed light curve.15
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1. INTRODUCTION18

Atmospheric waves are important to the momentum or energy budgets of most of the upper atmospheres in our solar19

system. While some waves have large vertical wavelengths that are easily resolved even by relatively low-resolution20

methods of remote sensing such as infrared sounding (e.g. Hinson & Wilson 2023), stellar occultations are one of the21

few methods of remote sensing that can resolve atmospheric waves with sub-scale-height vertical wavelengths (French22

& Gierasch 1974; Roques et al. 1994; Sicardy 2022; Cooray & Elliot 2003). Stellar occultations reveal light curves, or23

the change in flux vs. time as a star sets behind or emerges from behind a planetary atmosphere. The abscissa of such24

a curve is often expressed in terms of the shadow radius, y, or the distance between the observer and the center of the25

shadow, on a plane passing through the observer and perpendicular to the unit vector to the star (see e.g. Sicardy26

(2022)).27

The Uranus occultation (Figure 1) of 1995 Sept 9 (French et al. 2023; Saunders et al. 2024) shows some of the28

typical characteristics of many occultations by giant planets or Titan. (1) The light curve is dominated by narrow29

spikes from waves or turbulence. (2) These spikes often exceed the unocculted stellar flux. (3) The spikes are narrow30

but often resolved, with broader troughs between the spikes. (4) The spikes are highest when the average flux is31

near halflight, and decrease in the tail. (5) In the tail of the light curve, the time between spikes increases. The32

reduction of occultations such as this have generally followed one of three methods: inversion of the data, statistical33

characterization of the spikes, or parameterized forward modeling.3435

The inversion method uses an Abel transform to calculate a refractivity profile from an observed light curve (Wasser-36

man & Veverka 1973; French et al. 1978; Elliot et al. 2003). At its best, this method achieves the highest possible37

spatial resolution, since each observed value of flux translates into a derived refractivity in the atmosphere. However,38

this process requires very high signal-to-noise ratios on the raw data, and cannot handle negative fluxes, so data is often39

pre-averaged or smoothed. This method assumes geometric optics, no extinction, no ray crossing (where the starlight40

is overfocused by the atmosphere), and that the star is a point source. Furthermore, the statistical significance of the41

derived temperatures is difficult to characterize (Harrington et al. 2010).42
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Figure 1. The Uranus occultation of 1995 Sept 9 from SAAO. Here we plot the immersion in normalized stellar flux vs. distance
in the shadow plane, relative to half light and scaled by the atmospheric scale height. Altitude increases to the right, and, for
this immersion light curve, time increases to the left. This light curve shows many of the characteristics discussed in this paper
such as multiple examples of resolved spikes, some that reach higher than the unocculted flux level, and some that are observed
out to 45 scale heights with wider spacing and decreased maximum flux.

Another method concentrates on characterizing the statistical properties of the fluctuations in the refractivity and43

the phase screen from the statistical deviations of an observed light curve, compared to that produced by an isothermal44

atmosphere (Hubbard et al. 1978). This directly addresses the issue of describing the putative waves or turbulence,45

making predictions on the spacing of spikes deep in the tail or the variation of flux amplitude (Narayan & Hubbard46

1988). However, it does not attempt to derive profiles of refractivity or temperature.47

In parameterized forward modeling (Wasserman & Veverka 1973; Chamberlain & Elliot 1997), the atmosphere is48

described as a model with some small number of parameters. The simplest such model is an isothermal atmosphere,49

which depends on only two parameters, such as the scale height and the refractivity at a reference height. More50

complex functions can include thermal gradients (Elliot & Young 1992), more elaborate ad hoc functions (Yelle et al.51

1996), or be based on sophisticated atmospheric models (Zalucha et al. 2011). With forward modeling, the integrals52

of refractivity are calculated, including effects such as ray crossing, wave optics, and the finite angular size of the53

occulted star. The model light curves can be compared directly to observations, with best-fit parameters and formal54

errors typically calculated via estimation methods such as least-squares or Markov Chain Monte Carlo. The required55

line-of-sight integrals can be slow, which is rarely a limitation unless many light curves need to be calculated (e.g., for56

Monte Carlo noise analysis). A more severe limitation is that the models are rarely flexible enough to account for the57

small-scale structure at vertical wavelengths much smaller than a scale height.58

A newer approach describes an atmosphere as the product of a mean profile and a perturbation, and generates59

a light curve from the Fourier decomposition of the perturbation (Young 2009). This is faster than many forward60

models, because the expression for a line-of-sight integral of the product of an exponential and a sinusoid can be61

written analytically. A disadvantage of this method is one common to Fourier analysis: a ringing caused by the abrupt62

upper and lower boundaries. Ringing can be minimized by applying tapering to the perturbation. A related technique,63

windowing, can extract information on how the wave spectrum varies with altitude. Both windowing and tapering64

suggest an approach based on limiting the spatial extent of the modeled perturbation.65

In this paper, we present a variation of the forward modeling method of occultation data analysis based on wavelet66

decomposition of the refractivity. In this method, the refractivity is assumed to follow an exponential, with a per-67

turbation term that is a sum of wavelets. This has the speed advantages of the Fourier decomposition method while68

avoiding much of the ringing. Because any refractivity profile can be decomposed into a sum of wavelets, this method69

maintains the flexibility and high spatial resolution of the inversion method. Additionally, it maintains the advantages70

of other forward-modeling methods, including the ability to handle ray crossing, diffraction, and finite source sizes, as71

well as the ability to calculate analytic thermal gradients while providing more more tractable statistics.72
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Moreover, if we assume that the atmosphere must be statically stable to convective overturning, then we can73

place limits on the amplitudes of atmospheric waves. For each vertical wavelength (Lz), there is a maximum stable74

temperature fluctuation. This means, for each vertical wavelength, we can also find the maximum stable fluctuations75

in bending angle and the bending angle derivative. This leads to four limits: vertical wavelengths that can cause any76

spike (local maximum in a light curve); vertical wavelengths that can cause bright spikes that exceed the unocculted77

flux; vertical wavelengths that lead to ray crossing; and vertical wavelengths that lead to such large scattering of78

incoming rays that the light is offset by more then Lz.79

Although developed for ground-based refractive stellar occultations, many of the ideas here can be applied to80

problems involving the line-of-sight integral through an atmosphere, such as radio occultations, UV occultations, or81

images of haze layering.82

2. WAVELETS REVIEW83

Just as an arbitrary function can be expressed as a sum of coefficients times sines and cosines (aka the Fourier84

Transform), it can be expressed as a sum of coefficients times wavelets, a class of functions that are compact in time, t,85

and frequency, ω (Torrence & Compo 1998; Farge 1992; Kaiser 1994). This compactness makes wavelets particularly86

useful for atmospheric studies of waves and turbulence. Wavelet analysis allows us to identify individual waves and87

evaluate their statistical significance, or to measure the power spectrum vs. height. Wavelets are as flexible as Fourier88

transforms, while avoiding, or at least isolating, many of the problems of ringing near the boundaries of a non-periodic89

function.90

A wavelet description begins with a unitless function ψ(t) of the unitless “time” variable, t. ψ(t) is called the “mother91

wavelet” because it spawns a family of shifted and scaled “daughter wavelets.” Wavelets scale and translate in a way92

that preserves their shape and total power. Daughter wavelets, translated by a real value ∆ and scaled by a real value93

s > 0, are related to the mother wavelet by94

ψ(s,∆; t) = |s|−1/2ψ

(
t−∆

s

)
(1)95

The mother wavelet has s = 1 and ∆ = 0. Larger s therefore means longer wavelength (smaller ω). Wavelets can also96

be shifted and scaled by discrete integer indices, which are related to s and ∆ by s = 2−j and ∆ = k2−j . In other97

words, discrete wavelets can be related to continuous ones by ψj,k(t) = ψ(2−j , k2−j ; t).98

We use Meyer wavelets (Sato & Yamada 1994), defined in the unitless “frequency” domain, ω:99

h(ω) =

{
e−

1
ω2 , ω > 0

0, ω ≤ 0
(2)100

gSY (ω) =
h
(
4π
3 − ω

)
h
(
ω − 2π

3

)
+ h

(
4π
3 − ω

) (3)101

ϕ̂(ω) =
√
gSY (ω)gSY (−ω) (4)102

ψ̂(ω) = e−iω/2
√
ϕ̂(ω/2)2 − ϕ̂(ω)2 (5)103

The wavelet in the time domain is then104

ψ(t) =

∫ ∞

−∞
eiωtψ̂(ω)

dω

2π
(6)105

The factor of e−iω/2 in the definition of ψ̂(ω) centers the mother wavelet at t = 1/2. The mother wavelet is shown106

in Figure 2.107

For Meyer wavelets, the horizontal scale of the mother wavelet is set so that shifting the wavelet by 1 in t gives a108

wavelet that is orthogonal to the unshifted one, and for all wavelets, the amplitude of the mother wavelet is set so109

that the mother has unit power (
∫
ψ2dt = 1). For the version of the Meyer wavelet we use here, the power-weighted110

frequency for the mother wavelet is ω̃ψ = 4.76 = 1.52π, and the amplitude of the mother wavelet, Aψ = max |ψ(t)|, is111

1.19.112

Meyer wavelets have a number of useful mathematical properties. The discrete set of ψj,k forms an orthonormal113

set of functions. ψ(t) is extremely smooth, as it is infinitely differentiable, and ψ̂(ω) is extremely compact spectrally,114
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Figure 2. The mother wavelet, ψ (left), and its Fourier Transform, ψ̂ (right). On the left we plot the wavelet in the time
domain and on the right we plot the absolute value of the complex wavelet in the frequency domain. For the Meyer wavelet
used by Sato & Yamada (1994) and in this work, the wavelet in the time domain is extremely smooth, and the wavelet in the
frequency domain is compact, being zero except for at a small range of frequencies.

being zero except for a narrow range of frequencies. Additionally, these wavelets have been used by other authors to115

investigate gravity wave activity in the terrestrial atmosphere (Sato & Yamada 1994; Yamada & Ohkitani 1990, 1991).116

Finally, they have an infinite number of vanishing moments, making them well suited for measuring the slope of a tail117

of a distribution (Perrier et al. 1995; Abry et al. 1995), which has been used to characterize turbulence or breaking118

gravity waves.119

3. LIGHT CURVES FROM AN EXPONENTIAL BASELINE ATMOSPHERE120

From the refractivity profile of an atmosphere, ν(r) (that is, refractivity vs. radius, r, from the planet center),121

gravitational acceleration, g, molecular mass, µ, molecular refractivity, K, and body-observer distance, D, we can122

calculate the atmospheric structure (number density, n, density, ρ, pressure, p, temperature, T , and temperature123

gradient, Tr) and models of ground-based refractive occultations (line-of-sight integral of refractivity, α, bending angle,124

θ, shadow radius, y, bending angle gradient, θr, and normalized stellar flux, f). For derivations, details, citations, and125

further background, see Saunders (2024); Sicardy (2022); Young (2009); Elliot & Young (1992); Eshleman & Gurrola126

(1993); Wasserman & Veverka (1973), French & Lovelace (1983) and the foundational Baum & Code (1953). These127

equations assume spherical symmetry and a small bending angle. For extensions to oblate planets or large bending128

angles, see Schinder et al. (2015). See Table 4 for a list of symbols.129

We write the refractivity as a baseline times a perturbation (Young 2009). In this work, we assume an exponential130

baseline. That is, the atmosphere has a constant scale height, H0, and the scale heights of pressure, density, and131

refractivity are all equal and constant with altitude (Baum & Code 1953). In other words, the temperature and132

composition are constant and we can ignore the variation of gravity with height (valid if r ≫ H0, called the “large133

planet approximation” by Elliot & Young (1992) and the “small scale height approximation” by Sicardy (2022)).134

In that case, the hydrostatic altitude, z(r), above a reference radius, r0, is simply z(r) = r − r0, and the baseline135

refractivity is ν̄(r) = ν0e
−z(r)/H0 . (The overbar indicates the baseline atmosphere. See Table 5 for a list of accents.)136

In this work, we take r0 to be the radius of half-light in the baseline atmosphere, f̄cyl(r0) = 1/2, where f̄cyl is the flux137
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ignoring the horizontal refocusing of starlight and far-limb effects (Elliot & Young 1992). Because z is a monotonic138

function of r, we simply write z for z(r) and z′ for z(r′).139

The refractivity perturbation is one plus a sum of coefficients times a discrete number of unitless fluctuation functions,140

cj,k ψ
ν
j,k(z), where j is an index over vertical wavenumber, and k is an index over altitude. The superscript ν indicates141

fluctuation functions used to decompose refractivity.142

ν(r) = ν̄(r)

[
1 +

∑
j,k

cj,kψ
ν
j,k(z)

]
(7)143

We have several goals in this section. One is to relate the fluctuation functions in other parameters (ψTj,k, ψ
θ
j,k, etc.)144

to ψνj,k. These relations are independent of the choice of ψν , and we simply write ψν for the fluctuation function of ν145

in Table 1. Our second goal is to present the limits imposed by static stability on a single Meyer wavelet. We express146

these as the maximum fluctuation amplitude147

Aν(s) ≡ max |ccrit(s)ψν(s, 0; z)|. (8)148

ccrit is the largest value of c for which a single wavelet is statically stable, and depends only on the scale, s (or,149

equivalently, the wavelength or wavenumber). Values for Aν(s) are given in Table 2, as are the maximum amplitudes150

for the other parameters. The final goal is to recap the calculation of an occultation light curve.151

Table 1. Summary of Baseline and Fluctuation for an Exponential Atmosphere

Parameter Baseline Fluctuation

ν ν̄(r) = ν0e
−z/H0 ψ̂ν(m)

n n̄(r) = ν̄(r)/K ψ̂n(m) = ψ̂ν(m)

ρ ρ̄(r) = µn̄(r) ψ̂ρ(m) = ψ̂ν(m)

p p̄(r) = gH0ρ̄(r) ψ̂p(m) = ψ̂ν(m)Hm
H0

T T̄ (r) = p̄(r)/(kBn̄(r)) ψ̂T (m) ≈ −ψ̂ν(m)
(
1− Hm

H0

)
Tr T̄r(r) = 0 ψ̂Tr (m) ≈ −ψ̂ν(m)imH0

(
1− Hm

H0

)
α ᾱ(r) = ν̄(r)

√
2πrH0 ψ̂α(m) = ψ̂ν(m)

√
Hm
H0

θ θ̄(r) = −ν̄(r)
√

2πr
H0

ψ̂θ(m) = ψ̂ν(m)
√

H0
Hm

θr θ̄r(r) = ν̄(r)
√

2πr
H3

0
ψ̂θr = ψ̂ν(m)

(
H0
Hm

)3/2

θrr θ̄rr(r) = ν̄(r)
√

2πr
H5

0
ψ̂θrr (m) = ψ̂ν(m)

(
H0
Hm

)5/2

3.1. Atmospheric variables152

In this subsection, we discuss fluctuations in the atmospheric parameters, ν, n, ρ, p, T , and Tr. We present how the153

fluctuation function for ν relates to that of the other parameters in rows 2-6 of Table 1, and limits on their maximum154

amplitudes in rows 4-7 of Table 2.155

To use the Meyer wavelets of Section 2, we non-dimensionalize the hydrostatic altitude, z, and vertical wavenumber,156

m, with the scale height, so that t = z/H0 and ω = mH0. With this, the characteristic wavelength is Lz/H0 = 1.32s,157

where Lz = 2π/m̃, and m̃ is the power-weighted vertical wavenumber, m̃H0 = ω̃ψ/s. In this paper, we present results158

for Lz/H0 from ∼ 10 to ∼ 0.001. This range includes larger waves seen in Saturn’s, Jupiter’s, and Earth’s mesospheres159

(Harrington et al. 2010; Young et al. 2005; Fritts & Alexander 2003) and smaller waves limited by Fresnel diffraction160

or the rate at which the occultation is observed. The Meyer wavelet is symmetric around z/H0 = ∆+ s/2. We plot161

ψν for s = 1 and c = ccrit(1.0) = 0.054 in Figure 3. It differs from Figure (2) only by the amplitude.162

The number density scales from ν via the molecular refractivity, K (that is, the Lorenz-Lorentz formula for a163

refractive index near unity, Kragh (2018))164
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Figure 3. Statically stable fluctuations assuming Meyer wavelets for ψν , using s = 1, ∆ = 0, c = ccrit = 0.054. On the left we
show the fluctuations in refractivity, pressure, temperature, and temperature gradient vs. hydrostatic altitude in units of scale
height. On the right we show the absolute value of the Fourier Transform of these fluctuations. The fluctuations are given by
ccritψ

ν , ccritψ
p, ccritψ

T and ccritψ
Tr , where ccrit is determined by Equation (28). This figure shows the differences in amplitude

and phase of the various fluctuations, and how the changes in the Fourier Transform lead to subtle changes in shape.

n(r) =
ν(r)

K
= n̄(r)

[
1 +

∑
j,k

cj,kψ
n
j,k(z)

]
(9)165
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which has a particularly simple expression for the mean and fluctuation: n̄(r) = ν̄(r)/K = n0e
−z/H0 , ψnj,k(z) = ψνj,k(z),166

and ψ̂nj,k(m) = ψ̂νj,k(m) (See Table 1).167

Density is similarly simple, scaling the number density by the molecular mass, µ, again following the notation of168

Sicardy (2022)169

ρ(r) = µn(r) = ρ̄(r)

[
1 +

∑
j,k

cj,kψ
ρ
j,k(z)

]
(10)170

from which ρ̄(r) = µn̄(r) = ρ0e
−z/H0 , ψρj,k(z) = ψνj,k(z), and ψ̂ρj,k(m) = ψ̂νj,k(m). (See Table 1). Because the171

refractivity, number density, and density fluctuation functions are identical (Table 1), their maximum amplitudes are172

equal (Table 2).173

We assume hydrostatic equilibrium for the baseline atmosphere, as usual (e.g., Elliot & Young 1992, Eshleman &174

Gurrola 1993). In that case,175

p̄(r) =

∫ ∞

r

gρ̄(r′) dr′ (11)176

where g is the (constant) gravitational acceleration, from which p̄(r) = gH0ρ̄(r) = p0e
−z/H0 . (See Table 1). This177

simply reproduces the ideal gas law, since H0 = RT̄/g, where R = kB/µ is the specific gas constant and kB is the178

Boltzmann constant.179

Calculating ψpj,k(z) is a little more involved. Following Pielke (2013), the atmosphere is in hydrostatic equilibrium if180

the horizontal scales are much larger than the pressure scale height. Since we assume spherical symmetry in this paper,181

horizontal scales are certainly larger than a scale height. Thus, the total pressure is also in hydrostatic equilibrium,182

and we have:183

p(r) =

∫ ∞

r

gρ(r′) dr′ = p̄(r)

[
1 +

∑
j,k

cj,kψ
p
j,k(z)

]
(12)184

from which (with Equation (10))185

p̄(r)ψpj,k(z) =

∫ ∞

r

gρ̄(r′)ψνj,k(z
′) dr′ (13)186

Following Young (2009), we then take the Fourier transform of the perturbations in z, and combine the Fourier and187

baseline exponents. We denote the Fourier transform of a function ψ(z) as ψ̂(m), where m is the vertical wavenumber,188

and use the following convention for the forward and inverse Fourier Transforms.189

ψ̂(m) =

∫ ∞

−∞
e−imzψ(z) dz (14)190

ψ(z) =

∫ ∞

−∞
eimzψ̂(m)

dm

2π
(15)191

In a real atmosphere, we cannot integrate beginning at z = −∞; for solid surfaces, the atmosphere begins at the192

surface, and for all atmospheres, the center of the body is at r = 0. Similarly, we cannot realistically integrate to193

∞ because the atmosphere reaches non-collisional conditions and violates the assumption of hydrostatic equilibrium,194

although this limitation often has little practical effect. Fluctuations that are localized in altitude (unlike the sines195

and cosines in the usual Fourier Transform) allow us to choose finite integration bounds that enclose most of the power196

of the fluctuations.197

It is useful to define a complex scale height (Young 2009) that is independent of radius,198

Hm =
H0

1− imH0
(16)199

so that200

−z
′ − z

H0
+ imz′ = imz − z′ − z

Hm
(17)201

The pressure fluctuations are found by Equation (13); substituting the Fourier transform of ψν(z′) =202 ∫
eimz

′
ψ̂ν(m) dm/2π and ρ̄(r′) = ρ̄(r)e−(z′−z)/H0 and factoring out gρ̄(r); swapping the order of integration and203
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applying Equation (17); and performing the inner integral over r′ (and recalling z′ − z = r′ − r)204

p̄(r)ψpj,k(r) = gρ̄(r)

∫ ∞

r

e−(z′−z)/H0

[∫ ∞

−∞
eimz

′
ψ̂νj,k(m)

dm

2π

]
dr′

= gρ̄(r)

∫ ∞

−∞
eimzψ̂νj,k(m)

[∫ ∞

r

e−(z′−z)/Hm dr′
]
dm

2π

= gρ̄(r)

∫ ∞

−∞
eimzψ̂νj,k(m)Hm

dm

2π

(18)205

from which, dividing both sides by p̄(r) = gH0ρ̄(r) and taking the inverse Fourier transform gives us the pressure206

fluctuations in terms of the refractivity fluctuations (See Table 1).207

ψ̂pj,k(m) = ψ̂νj,k(m)
Hm

H0
(19)208

The pressure fluctuation is plotted in Figure 3. Even for wavelengths comparable to the scale height, the pressure209

fluctuations are smaller than the density fluctuations, as expected.210

Temperature, from the ideal gas law, is211

T (r) =
p(r)

kBn(r)
≈ T̄

[
1 +

∑
j,k

cj,kψ
T
j,k(r)

]
(20)212

In our case, T̄ = p̄(r)/(kBn̄(r)) is constant with height. The decomposition is only approximate because division is a213

non-linear operator. For small fluctuations, we have214

ψTj,k(r) ≈ −ψνj,k(r) + ψpj,k(r) (21)215

Substituting Equation (19) into Equation (21) gives216

ψ̂Tj,k(m) ≈ −ψ̂νj,k(m)

(
1− Hm

H0

)
(22)217

(See Table 1). For fluctuations whose wavelengths are small compared to a scale height, Hm ≪ H0, so Equation (22)218

reduces to the common statement that scaled temperature fluctuations are equal in amplitude and opposite in sign to219

scaled density fluctuations. (See Table 2 and discussion in the Atmospheric Oscillation chapter of Holton (1992)).220

We scale the temperature gradient, Tr, by the ratio of the baseline temperature to scale height, T̄ /H0, and note that221

the baseline temperature gradient is zero in our case, T̄r = 0.222

Tr(r) ≡
dT (r)

dr
≈ T̄

H0

[∑
j,k

cj,kψ
Tr

j,k(r)

]
(23)223

From Equation (20)224

ψTr

j,k(r) ≈ H0

dψTj,k(r)

dr
(24)225

Because dr/dz = 1, Equation (24) becomes ψTr

j,k(z) = H0 dψ
T
j,k(z)/dz. Taking the Fourier transform of both sides226

and bringing the derivative inside the integral for ψ̂Tj,k gives:227

ψ̂Tr

j,k(m) ≈ ψ̂Tj,k(m)imH0 (25)228

which, with Equation (22)229

ψ̂Tr

j,k(m) ≈ −ψ̂νj,k(m)imH0

(
1− Hm

H0

)
(26)230

For a single wave to be statically stable, the total thermal gradient, Tr(r), is limited by the adiabatic lapse rate,231

Γ = g/cp, where cp is the specific heat at constant pressure. Since we define ATr as the maximum stable amplitude,232
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Equation (23) gives233

T̄

H0
ATr =

g

cp
(27)234

which, with the definition of H0, gives235

ATr =
R

cp
= κ (28)236

where κ is the symbol typically given to the ratio of the specific gas constant to the specific heat at constant pressure.237

κ = 2/7 = 0.29 for an ideal diatomic molecule.238

The amplitudes, such as ATr , are evaluated for an entire fluctuation, and as such are functions of the wavelet scale,239

s. For each s there is a characteristic wavelength Lz, and a power-weighted vertical wavenumber m̃. Since many240

atmospheres in our solar system are diatomic molecules (H2, N2), we set ATr = 2/7 for all values of s in Table 2. We241

then find the value of ccrit that produces ATr = 2/7, and then the other wavelet amplitudes, using the relations in242

Table 1.243

Table 2. Maximum Fluctuation Amplitudes for Solitary Stable Wavelets

wavelet scale, s 10.0 3.89 2.15 0.455 0.100 0.0100 0.00100

Lz/H0 13.2 5.14 2.84 0.600 0.132 0.0132 0.00132

m̃H0 0.476 1.22 2.21 10.47 47.60 476.0 4760.

ccrit ≈
√
m̃ψ(κ/Aψ)(m̃H0)

−3/2 1.93 0.50 0.18 0.016 0.0017 5.3E-05 1.7E-06

Aν = An = Aρ ≈ κ(m̃H0)
−1 0.72 0.30 0.15 0.028 0.0062 0.00062 6.2E-05

Ap ≈ κ(m̃H0)
−2 0.64 0.19 0.061 0.0026 0.00013 1.3E-06 1.3E-08

AT ≈ κ(m̃H0)
−1 0.44 0.25 0.13 0.027 0.0062 0.00062 6.2E-05

ATr = κ 0.29 0.29 0.29 0.29 0.29 0.29 0.29

Aα ≈ κ(m̃H0)
−3/2 0.68 0.24 0.095 0.0087 0.00090 2.8E-05 9.0E-07

Aθ ≈ κ(m̃H0)
−1/2 0.76 0.38 0.23 0.091 0.043 0.013 0.0043

Aθr ≈ κ(m̃H0)
1/2 0.85 0.61 0.57 1.0 2.1 6.8 21.

Aθrr ≈ κ(m̃H0)
3/2 0.95 1.0 1.5 12. 1.1E+02 3.6E+03 1.1E+05

244

245

3.2. Occultation variables246

Body Plane Observer Plane

Atmosphere

Body

D

x

yr

r'
dy

dr 𝛉

Starlight

Figure 4. Refraction during a stellar occultation by a distant spherically symmetric atmosphere with a small bending angle.
This schematic drawing shows the coordinates used here, where the body plane is perpendicular to the incident rays of starlight
and passes through the center of the body. After Elliot & Young (1992).
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The integrals for α (and therefore θ, θr, and θrr) require an integral along the line of sight (Figure 4). In this247

subsection, we derive their fluctuation functions in terms if ψ̂ν (see rows 7-10 of Table 1), and the limits on their248

maximum amplitudes (see rows 8-11 of Table 2).249

For refractive ground-based stellar occultations, we can assume negligible bending of the ray though the atmosphere,250

so that the radius at a line-of-sight distance x on a ray with closest approach radius r is given by251

r′ =
√
r2 + x2 (29)252

and the line-of-sight integral of refractivity, α, is253

α(r) =

∫ ∞

−∞
ν(r′) dx = ᾱ(r)

[
1 +

∑
j,k

cj,kψ
α
j,k(r)

]
(30)254

where255

dx =
r′ dr′√
r′2 − r2

(31)256

from which the baseline and fluctuations for α can be written257

ᾱ(r) =

∫ ∞

−∞
ν̄(r′) dx (32)258

ᾱ(r)ψαj,k(r) =

∫ ∞

−∞
ν̄(r′)ψνj,k(r

′) dx (33)259

Similarly to the pressure calculation, we substitute ν̄(r′) = ν̄(r)e−(z′−z)/H0 and the Fourier transform of ψν , factor260

out ν̄(r), swap the order of integration, and apply Equation (17)261

ᾱ(r) = ν̄(r)

∫ ∞

−∞
e−(z′−z)/H0 dx (34)262

ᾱ(r)ψαj,k(r) = ν̄(r)

∫ ∞

−∞
eimzψ̂νj,k(m)

[∫ ∞

−∞
e−(z′−z)/Hm dx

]
dm

2π
(35)263

The next step is to perform the integral in Equation (34) and the inner integral in Equation (35). When the radius is264

much larger than the scale height, we can retain only the leading terms in H0/r (aka the “large planet” approximation265

(Elliot & Young 1992)). For the exponential atmosphere, z′− z = r′− r, and we can expand the exponent (e.g., Baum266

& Code (1953), Elliot & Young (1992))267

z′ − z = r′ − r ≈ x2

2r
(36)268

with which, to first order in H0/r, using
∫∞
−∞ e−cx

2

dx =
√
π/c, for real c > 0 or complex c with real part > 0, we get269

the familiar ᾱ(r) = ν̄(r)
√
2πrH0 and the less familiar270

ᾱ(r)ψαj,k(r) = ν̄(r)

∫ ∞

−∞
eimzψ̂νj,k(m)

√
2πrHm

dm

2π
(37)271

Dividing Equation (37) by ᾱ272

ψαj,k(r) =

∫ ∞

−∞
eimzψ̂νj,k(m)

√
Hm

H0

dm

2π
(38)273

which, by inspection from the inverse Fourier Transform (Equation (15)), gives the fluctuation for the line-of-sight274

refractivity (Table 1).275

ψ̂αj,k(m) = ψ̂νj,k(m)

√
Hm

H0
(39)276
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Figure 5. Statically stable fluctuations assuming Meyer wavelets for ψν , using s = 1, ∆ = 0, c = ccrit = 0.054. On the left we
show the fluctuations in line of sight integral of refractivity, bending angle and its derivatives vs. hydrostatic altitude in units
of scale height. On the right we show the absolute value of the Fourier Transform of these fluctuations. The fluctuations are
given by ccritψ

α, ccritψ
θ, ccritψ

θ
r and ccritψ

θrr , where ccrit is determined by Equation (28). As with Figure 3, this figure shows
the differences in amplitude and phase of the various fluctuations, and how the changes in the Fourier Transform lead to subtle
changes in shape.
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The fluctuation function ψα act like a “half-integral” of ψν (Table 2). This supports the common observation that277

the line-of-sight integral averages out small scale variations.278

The bending angle, θ, is computed and decomposed as follows:279

θ(r) =
dα(r)

dr
= θ̄(r)

[
1 +

∑
j,k

cj,kψ
θ
j,k(r)

]
(40)280

To first order in H0/r, the baseline bending angle is281

θ̄(r) = dᾱ(r)/dr = −ᾱ(r)/H0 (41)282

and the fluctuation is found from283

θ̄(r)ψθj,k(r) =
d ᾱ(r)ψαj,k(r)

dr
(42)284

We then apply the product rule; substitute Equation (41) and dr/dz = 1; substitute the Fourier transform of ψαj,k,285

factor out θ̄, and take the derivative inside the integral286

θ̄(r)ψθj,k(r) =
d ᾱ(r)

dr
ψαj,k(r) + ᾱ(r)

dψαj,k(r)

dr

= θ̄(r)ψαj,k(r)− θ̄(r)H0

dψαj,k(r)

dz

= θ̄(r)

∫ ∞

−∞
eimzψ̂αj,k(m)(1−H0im)

dm

2π

(43)287

Using (1−H0im) = H0/Hm (Equation (16)) and Equation (39) gives (Table 1)288

ψ̂θj,k(m) = ψ̂νj,k(m)

√
H0

Hm
(44)289

The derivative of the bending angle with respect to radius, θr, is similarly decomposed:290

θr(r) ≡
dθ(r)

dr
= θ̄r(r)

[
1 +

∑
j,k

cj,kψ
θr
j,k(r)

]
(45)291

from which292

θ̄r(r) =
d θ̄(r)

dr
(46)293

θ̄r(r)ψ
θr
j,k(r) =

d θ̄(r)ψθj,k(r)

dr
(47)294

which, following the same steps as for θ, we find θ̄r(r) = −θ̄(r)/H0 and295

ψ̂θrj,k(m) = ψ̂νj,k(m)

(
H0

Hm

)3/2

(48)296

The derivation for the second derivative of the bending angle. θrr, used in the next section, proceeds identically (See297

Table 1).298

The fluctuation functions ψθ, ψθr , and ψθrr act like increasingly higher derivatives of ψν (“half”,“1.5th”, “2.5th”).299

As previously noted by others (e.g., Cooray & Elliot 2003), small variations in ν can lead to large variations in θr.300
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3.3. The observed light curve301

With θ(r) and θr(r), we can calculate the observed light curve using geometric optics. The radius from the shadow302

center, y, reached by a ray with tangent radius r is303

y(r) = r +Dθ(r) (49)304

The stellar flux diminishes as the differential refraction defocuses the starlight parallel to the refractivity gradient by305

dr/dy. If we ignore horizontal focusing and far limb contributions then we get what is called the “cylindrical-planet”306

approximation to the stellar flux (Elliot & Young 1992).307

fcyl(r) =

∣∣∣∣ 1

1 +Dθr(r)

∣∣∣∣ (50)308

The starlight is also refocused perpendicular to the refractivity gradient by r/y, and the normalized stellar flux observed309

at y from a ray with tangent radius r is310

f(y(r)) =

∣∣∣∣ 1

1 +Dθ(r)/r

∣∣∣∣× ∣∣∣∣ 1

1 +Dθr(r)

∣∣∣∣ (51)311

As noted in Elliot & Young (1992), Equations (50) and (51) are for the normalized stellar flux from a single ray, and312

do not account for multiple rays striking the same location, either due to ray-crossing from over-focused rays, or from313

the far-limb contribution.314

They also do not account for wave-optical effects. For that, we follow French & Lovelace (1983) and Goodman315

(1996) and express the flux at shadow radius y as316

f(y) = |E(y)|2 (52)317

where E(y) is the (complex) electric field in the observer’s plane.318

E(y) =
1√
iDλ

∫ ∞

−∞
ei2πα(r)/λeiπ(y−r)

2/(Dλ) dr (53)319

The first exponent is the phase delay at the wavelength of the observation, λ. The second exponent arises from the320

Fresnel approximation. The product Dλ is the square of the Fresnel scale for the unocculted star. As discussed by321

Narayan & Hubbard (1988), diffraction needs to be considered in the case of multiple rays striking the same location,322

more generally termed multipath propagation. Diffraction could add to the scintillation depending on the relative323

phase delays for the multiple rays, if the projected size of the star (that is, its angular diameter multiplied by D) is324

small compared to
√
Dλ, and if the bandpass of the filter used to observe the occultation is narrow enough. Stars325

bright enough to be observed at high time resolution and with narrow filter bandpasses also tend to have large angular326

diameters. On the other hand, as the sensitivity of detectors improve, it is exciting to speculate on which occultations327

will be affected by wave optics.328

Previous work (e.g., Elliot et al. 2003) has related, for example, the possibility of ray crossing to magnitude of329

refractivity fluctuations, but did not include the limits imposed by the condition of static stability (Table 2). We can330

calculate occultation light curves with equations (50), (51), or (52), and we can find the fluctuations in the line-of-sight331

integral of refractivity and the bending angle or its derivatives from fluctuations in refractivity (Table 1). Together,332

this lets us use wavelets to characterize and visualize the effect of specific wavelengths at specific levels of the light333

curve, which we do in the following section.334

4. IMPLICATIONS OF STATIC STABILIY LIMITS335

We have established that, for an atmosphere to be stable, there are limits on the amplitude of the fluctuations, and336

that these limits depend on the vertical wavelength. In this section, we look at the implications of these limits on the337

morphology of light curves, and for light curve analysis.338
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4.1. Very large waves cannot make spikes339

Spikes are sharp increases in the flux in a light curve due to local refocusing. But waves with long vertical wavelengths340

are hard to distinguish from a modified background atmosphere, and cannot make spikes. What waves can make spikes?341

We codify that by asking what conditions are required to see any local maxima in the light curve flux. We keep our342

previous assumptions, that we are ignoring horizontal focusing or far-side contributions (so we are not considering343

central flash caustics (Sicardy 2022)). Thus, our condition is that there is a local maximum in fcyl (Table 3). From344

Equation (50), this occurs when the second derivative of the bending angle vanishes, or θrr = 0. For a single stable345

wavelet, this implies 1 + ccritψ
θrr = 0, or Aθrr = 1. From Table 2, this condition is satisfied only for Lz/H0 < 5.14346

(Table 3, Figure 7).347

An example light curve is shown in Figure 6. Because waves with large vertical wavelengths (Lz/H0 ≥ 5.14 scale348

heights) cannot make spikes, if the light curve shows spikes, or even local maxima, then there must be fluctuations349

with vertical wavelengths shorter than 5.14 scale heights.350

Table 3. Wavelength Limits on Lightcurve Morphology

Morphology Condition Limits Analytic Approximation

Local maxima d(fcyl)/dr = 0 Aθrr = 1 Lz/H0 = 5.14

Unit flux fcyl = 1 Aθr = 1 Lz/H0 = 0.60

Ray cross dy/dr = 0 Aθr = (1− f̄cyl)
−1 Lz/H0 ≈ 0.013(1− f̄cyl)

2

Large scattering D|θ − θ̄| = Lz/f̄cyl Aθ = (Lz/H0)(1− f̄cyl)
−1 Lz/H0 ≈ 0.0032(1− f̄cyl)

2
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Figure 6. Simulated light curve for a statically stable wavelet at f̄cyl = 0.5, with Lz/H0 = 5.14, and ccrit = 0.75. Here we plot
an occultation light curve as distorted by a single wavelet (solid) and the undistorted light curve (dotted). For this wavelet, the
end of the upward fluctuation is level with the beginning of the downward fluctuation resulting in a non-negative light curve
slope throughout. A statically stable wavelet at a smaller wavelength would result in a discernible spike.

4.2. Moderately large waves cannot exceed the unocculted flux351

If waves with Lz/H0 ≤ 5.14 are able to make spikes, the next question becomes, what waves can make spikes that352

are as bright as or brighter than the unocculted flux? That condition is fcyl = 1 (Table 3), and, from Equation (50),353

this occurs when θr = 0, or Aθr = 1. This condition is met only for Lz/H0 < 0.60 (Table 3, Figure 7), for κ = 2/7.354
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Figure 7. Light curve morphology limits. Here we summarize the various effects discussed in Section 4. The baseline light
curve flux level (effectively depth into the shadow) is plotted against the log of the fluctuation wavelengths. The labeled regions
(A-E) show which diagnostic regime results. For waves with wavelengths longer than 5.14 H0, Region A, spikes are not possible
for statically stable waves in an exponential baseline atmosphere. Waves with vertical wavelengths longer than 0.60 H0, Regions
A-B, cannot make spikes brighter than the unocculted flux. Even waves with fairly small vertical wavelengths (Lz/H0 > 0.13
at half-light), Regions A-C, do not lead to ray crossing. And even waves with very small vertical wavelengths (Lz/H0 > 0.003
at half-light), Regions A-D, cannot deflect the incoming starlight by more than a wavelength.

An example light curve is shown in Figure 8. Because waves with moderately large vertical wavelengths (Lz/H0 ≥355

0.60) cannot make spikes brighter than the unocculted flux, if the light curve shows bright spikes, then there must be356

fluctuations with vertical wavelengths shorter than 0.60 scale heights.357
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Figure 8. Occultation light curve with statically stable wavelets at f̄cyl=0.5, 0.1, and 0.025 and Lz/H0 = 0.60. We again
plot an occultation light curve as distorted by waves. Note that for these values, the peak of all spikes remains at or below the
unocculted baseline level. This limit corresponds to the boundary between regions B and C in Figure 7.

4.3. Many waves cannot cause ray crossing unless they are deep into the light curve358

For waves shorter than Lz/H0 = 0.60, the atmosphere is able to bring the star into sharper focus. Perfect focus359

happens when dy/dr = 0 (Table 3), or, equivalently, when 1/fcyl = 0 or Dθr = −1 (Elliot et al. 2003). Wave optics360

and the finite size of the occulted star prevent the flux from reaching infinity in the real world (Sicardy 2022). When361

the star is overfocused, the atmosphere causes incoming rays to cross. In the words of Elliot et al. (2003) “ray crossing362

occurs when the rays of starlight arrive in the observer plane in a different radial order from that in which they entered363

the body plane.” As discussed by Elliot et al. (2003), there is a portion of the light curve, at higher flux levels, where364

spikes are not well-focused. We can quantify that here. Using the decomposition of Equation (45) and relating Dθ̄r365
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to f̄cyl, Dθr = −1 when Aθr = (1− f̄cyl)
−1. Because the wavelengths are short, we can use the approximations listed366

in Table 2 and find that the limiting wavelength is quadratic in 1− f̄cyl (Table 3). At half light or above, even waves367

with smallish vertical wavelengths (Lz/H0 ≥ 0.13, for κ = 2/7) cannot cause ray crossing (Fig 7). An example light368

curve (Figure 9) shows three wavelets that lead to perfect focusing. These are calculated with geometric optics via369

Equation (50), as are all the light curves shown in this section.370

The restriction, from static stability, that some waves cannot cause ray crossing provides a simple measure of the371

reliability of light-curve inversion. As light-curve inversion and the underlying Abel transformation require the linear372

conservation of light-curve flux, ray crossing scenarios break this fundamental assumption and render the process373

unreliable. Elliot et al. (2003) outline various approaches to mitigate this. The first is the binning of the light374

curve, thus reducing the resolution in y; if the ray crossing occurs within a single y bin, then the inversion method375

remains valid. This approach was improved upon by Saunders et al. (2023) with the introduction of “ratchet binning”,376

which attempts to make the binning process more reliable at lower flux levels. A second approach is to simply restrict377

ourselves to the higher flux levels of the occultation where the limiting wavelengths for ray crossing are small compared378

with the full resolution at which the occultation was observed (Figure 7). Here we show that we could also smooth379

the light curve, with a variable smoothing factor that gets coarser as the baseline flux gets smaller. The analysis here380

provides the guidance for how much smoothing is required for valid Abel inversions.381

Elliot et al. (2003) describe ways to recognize that ray crossing has occurred beyond the binning of y, such as caustic382

spikes (if the center is overfocused, there will be two locations flanking the center that are in perfect focus, and these383

produce spike caustics, Cooray & Elliot (2003)). While these invalidate Abel inversions, they can be examined using384

forward modeling, such as the wavelet technique outlined here.385
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Figure 9. Light curve resulting from statically stable wavelets centered at f̄cyl=0.5, 0.1, and 0.025 and Lz/H0 = 0.13, 0.42,
and 0.49. Here the waves are in perfect focus (just shy of ray crossing). In contrast to Figure 8, here the spikes exceed the
unocculted flux level. At amplitudes smaller than perfect focus, Abel inversions remain valid (Regions A, B, and C in Figure
7).

4.4. Most waves of interest do not scatter the light farther than their own wavelength386

The above discussion about ray crossing suggests the strategy of smoothing to a chosen resolution. For example, to387

capture atmospheric behavior at a scale of Lz or larger, for some specified Lz, we could smooth the light curve in the388

observer’s plane to Lz/f̄cyl. (Because of the defocusing of starlight, the vertical scale in the observer’s plane is finer389

than in the atmosphere plane by a factor of f̄cyl, so a vertical scale of Lz in the atmosphere maps to Lz/f̄cyl in the390

observer’s plane.) This smoothing strategy fails if the waves themselves scatter the incoming rays by more than their391

own wavelength.392

The light is offset in the observer’s plane by Dθ, and is scattered from the baseline offset by D(θ − θ̄). The limit393

on wavelets that scatter enough to mix signals beyond their own wavelength occurs at D|θ − θ̄| < Lz/f̄cyl. This can394

be reframed using Equation (50) (Table 3). Even waves with very small vertical wavelengths (Lz/H0 ≥ 0.003 at half395
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light, for κ = 2/7) cannot scatter light farther than Lz (Figure 10). This can serve as a practical limit to avoid mixed396

signals.397
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Figure 10. Simulated occultation light curve with a statically stable wavelet at f̄cyl = 0.5 and Lz/H0 = 0.0032. At this
wavelength, the light is scattered to a distance of the characteristic wavelength around the center of the perturbation, but not
beyond. Note how tightly confined all light-curve effects are at these small wavelengths.

5. DISCUSSION AND FUTURE WORK398

Wavelets, being compact in both altitude and wavenumber, are well suited to describing localized, quasi-399

monochromatic fluctuations such as turbulence or dissipating gravity waves. The derived coefficients of the wavelets400

can be directly related to items of physical interest, such as the power spectra of the fluctuations, with less noise401

than the unsmoothed Fourier transform, while also preserving altitude information. In previous atmospheric research,402

wavelet analysis has identified isolated dominant gravity wave modes, and followed the altitude dependence of the403

amplitude and wavelength of those waves (Harrington et al. 2010; Young et al. 2005). As a final advantage, wavelet404

analysis may be better than Fourier analysis for measuring the exponent of power spectra (Abry et al. 1995). This405

paper has laid out the foundations of wavelet analysis of occultation data, which can be extended in three ways.406

1. Arbitrary baseline atmospheres: In Section 3 we applied the general equations to the specific case of a baseline407

atmosphere with a constant scale height and perturbation functions based on Meyer wavelets. Many atmospheres,408

such as those of Pluto, Triton, Uranus, and Jupiter, have large thermal gradients at pressures probed by stellar409

occultations. For these, the perturbation functions can be numerically integrated using the general equations,410

such as Equation (33) for the line-of-sight integral.411

2. Retrieval of temperature profiles and power spectra vs altitude with a direct occultation wavelet transform412

(DOWT): The wavelet approach has the potential to be an alternative to Abel inversions, with well-behaved413

error analysis and the ability to handle ray crossing, diffraction, and finite star sizes. This maintains the speed414

advantages of the Fourier decomposition method while avoiding some of the ringing. Because any refractivity415

profile can be decomposed into a sum of wavelets, this method maintains the flexibility and high spatial resolution416

of the inversion method. Wavelet analysis shows how a power spectrum varies with altitude. This allows, for417

example, not just the identification of cutoff at large m (small vertical wavenumbers) indicative of the dissipation418

of gravity waves, but also chance to look for the expected change in the cutoff with altitude (French & Gierasch419

1974; Smith et al. 1987; Sato & Yamada 1994; Hubbard et al. 2009). Our suggested approach for a direct420

occultation wavelet transform is to retrieve wavelet coefficients at successively finer scales.421

3. Application to Uranus and other atmospheres: Occultations by Uranus stop reaching the unocculted flux deep422

in the light curve (Figure 1). This may be telling us something about Uranus’s atmosphere, such as a423

lack of waves with small wavelengths at higher pressures. Or it may be a consequence of the fact424
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Table 4. Symbol Table

Symbol Definition Units (cgs)

Aψ Amplitude of the mother wavelet unitless

c Coefficient that multiplies the fluctuation functions unitless

ccrit(s) Largest value of c for a statically stable wave unitless

D Body-observer distance cm

E Electric field unitless

f(r) Normalized stellar flux unitless

fcyl(r) Normalized stellar flux, cylindrical approximation unitless

g Gravitational acceleration cm s−2

Hm Complex scale height for wavenumber m cm

H0 Scale height of baseline atmosphere at reference radius cm

j Index over vertical wavenumber integer

kB Boltzmann constant cm2 g s−2 K−1

k Index over altitude integer

K Molecular refractivity cm3 molecule−1

L Loschmidt’s number unitless

Lz Vertical wavelength cm

m Vertical wavenumber radian cm−1

m̃ Power-weighted mean vertical wavenumber radian cm−1

n(r) Number density cm−3

p(r) Pressure µbar

s Wavelet scale unitless

r Radius from body center in the planet plane cm

R Specific Gas Constant erg mole−1 K−1

t Time domain independent variable (Section 2) unitless

T (r) Temperature K

y(r) Radius from body center in the shadow plane cm

x Distance from the tangent point along the ray’s line-of-sight cm

z(r) Hydrostatic altitude, above r0 cm

α(r) Line-of-sight integral of refractivity cm

∆ Wavelet translation unitless

λ Wavelength of light for the observation cm

µ Molecular mass g molecule−1

ν(r) Refractivity unitless

θ(r) Bending angle radian

ρ(r) Density g cm−3

ψ(t) Mother wavelet unitless

ω Frequency domain independent variable (Section 2) unitless

ω̃ψ power-weighted mean frequency for the mother wavelet unitless

that ray crossing can occur for larger wavelength waves than near half-light, and an over-focused425

fluctuation will lower the peak flux. This can be investigated with detailed simulations of spectra426

of waves.427

6. SYMBOLS AND ACCENTS428



19

See Tables 4 and 5 for symbols and accents used in this paper.429430

Table 5. Table of Accents etc.

Symbol Definition Units (cgs)

r0 Reference radius cm

ν̄(r), p̄(r), ... Baseline ν, p, ... same as ν, p, ...

ν0, p0, ... Baseline ν, p, ... at r0 same as ν, p, ...

Tr(r), θr(r), ... r derivative of T , θ, ... cm−1 times units of T , θ, ...

ψν(z), ψp(z), ... Fluctuation functions for ν, p, ... unitless

ψ̂ν(m), ψ̂p(m), ... Fourier transform of fluctuation functions unitless

Aν(s), Ap(s), ... Maximum amplitude of ccrit(s)ψ
ν , ccrit(s)ψ

p, ... unitless

r′, z′, ... Variable of integration cm, same as r, z, ...

431

432
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