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MOON-FORMING IMPACTS INVOLVING PRE-IMPACT SPIN. Robin M. Canup (Southwest Research In-
gtitute, Department of Space Studies, Boulder, CO; robin@boulder.swri.edu).

Introduction: Prior simulations of giant impacts
capable of producing the Earth-Moon system predict
that the Moon forms predominately from material
originating from the impactor rather than from the pro-
toearth. Yet there are distinct isotopic similarities be-
tween the Earth and Moon. To date, simulations of
potential lunar-forming collisions have considered im-
pactors and target protoearths that are not rotating prior
to impact [1-3]. However, rapid planetary rotation
rates are expected throughout late stage terrestrial ac-
cretion [e.g., 4], and modeling of Pluto-Charon form-
ing collisions indicates that pre-impact spin can be
important, e.g. leading to the formation of intact satel-
lites rather than circumplanetary disks [5]. Herel con-
sider the effects of pre-impact spin on the fraction of
protolunar material derived from the impactor vs. the
target, and on the likelihood of forming a large intact
moon via giant impact.

Method: | utilize smooth particle hydrodynamics
(SPH, e.g. [1-3; 5]) with an improved version [6] of the
equation of state ANEOS [7]. The SPH code is a vari-
ant of that by Benz (e.g. [8]) that employs variable
smoothing lengths and a tree code to calculate explicit
gravitational interactions. Material strength is ignored,
a valid assumption for the planet-scale impacts simu-
lated here. The energy budget is determined by shock
dissipation [9], and work done by compressional heat-
ing and expansional cooling [e.g., 3].

Initial conditions: Each collision involves a total
mass, My (target + impactor), of approximately an
Earth-mass, described by between N = 60,000 and
120,000 SPH particles. Targets and impactors are dif-
ferentiated prior to the collision and contain 30% iron
and 70% forsterite by mass, having initial surface tem-
peratures ~ 2000 K (see [3] for details). Two values
for g, the ratio of the impactor mass to My, are consid-
ered, with g= 0.05 and g= 0.13. Impact velocity, Vim,
is varied from 1 £ Ving/Vesc £ 1.2, Where Ve is the mu-
tual escape velocity of the colliding objects, while im-
pact angles are varied from 24° £ x £ 53°, where x is
the angle between the impact trgjectory and the local
surface normal, so that x = 90° is a grazing impact.
The pre-impact spin vectors of either the target or im-
pactor are normal to the plane of the impact, and pre-
impact spin is classified as “prograde” if it has the
same rotational sense as the impact.

Results. Figs. 1-2 show results of 27 impact
simulations after ~ 24 hours of simulated time.

Prograde impactor or retrograde target. Open
diamonds show six N = 60,000 particle simulations in
which a successful impact from [3] (“Earth 119", Fig.
2) was repeated with either a pre-impact prograde spin
in the impactor (with spin period T = 5, 10, or 15 hr),
or a pre-impact retrograde spin in the target (with T =
15, 20 or 30 hr). In all six cases, the scaled impact
parameter, b’ = sin x, was fixed at b’ = 0.73, and
Vimp/Vese = 1. The six simulations yield broadly similar
results to those of the comparison simulation without
pre-impact spin (which had Mp/M_ = 1.62, 85% of the
disk originating from the impactor, and 5% of the disk
in iron, see [3] and Fig. 1), athough the disk masses
here are lower in some cases.

The three retrograde target cases yielded massive
and iron-depleted protolunar disks. The final system
angular momentum, Lg, in each case was in the range
0.94 £ Lg/Lgy £ 1.08 (where Lgy is the Earth-Moon
system angular momentum), lower than the no-spin
case from [3] (with Lg = 1.18Lg)) and more consistent
with the current Earth-Moon system than successful
lunar-forming candidates identified previoudly [10].

In the smulation involving the slowest prograde
impactor spin (Tinp, = 15 hr), an intact moon resulted
which contained 74% of alunar mass, no iron, and was
comprised of 87% impactor material by mass. The
moon had an eccentric orbit with e = 0.45 and a peri-
gee of 3.2 Earth radii. It has recently been argued that
a high early lunar orbital eccentricity is implicated by
the current “fossil bulge” in the Moon's figure [11].
However, an intact Moon formed overwhelmingly from
impactor-derived material may be difficult to reconcile
with the O-isotope compositions of the Earth and
Moon that fall on the same fractionation line [12].
The two faster impacator spin cases yielded progres-
sively lower disk masses and did not produce large
intact moons.

Prograde target. In twenty-one, N = 120,000 par-
ticle simulations, a range of impact speeds, angles, and
impactor sizes were considered in conjunction with
pre-impact prograde spin periods in the target pro-
toearth ranging from T = 4.3 to 102 hours. In each
case, the total pre-impact system angular momentum
was between 1.1 and 1.2Lgy. Similar trends are ob-
served as in cases without pre-impact spin [e.g. 3],
including that the orbiting mass, and impactor and iron
disk mass fractions generally increase for highly
oblique impacts.
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Figure 1: Results of giant impact simulations shown
as a function of the scaled impact parameter, b’ =
sin x. The first column in the legend indicates a pro-
grade (P) or retrograde (R) pre-impact spin in the
target (T) or impactor (I), the second column is
(Vimp/Vesc), and the third column is g (see text for
definitions). (a) Orbiting disk mass (Mp) in lunar
masses (M.). (b) Percentage of disk mass that origi-
nated from the impactor. (c) Fraction of iron in the

orbitina disk.
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Figure 2: The predicted satellite mass that would
accrete from the impact-generated disk, Ms [14],
scaled to the final planet’s mass, Mp, as a function
of the final bound planet-disk angular momentum,
scaled to the quantity [GM°R1]"%, where M and Rt
are the total final bound mass and the radius of an
equivalent spherical object containing that mass.
The green square indicates the Earth-Moon system.

Cases involving less grazing collisions and a pre-
impact prograde spin in the protoearth can produce
disks that are comprised predominately of target mate-
rial. Such an outcome is advantageous in accounting
for compositional similarities between the Earth and
Moon [e.g. 12-13]. However, at least in the prelimi-
nary suite of simulations performed here, the total disk
masses in such cases are substantialy less than a lunar
mass.
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