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Traditional accretion simulations predict rapid accumulation of
ring debris into single satellites, while most theories of ring forma-
tion dismiss any accretion within the classical Roche limit. The
former contradicts the continued presence of planetary rings, while
ti.« latter fails to adequately account for the many small satellites
observed within ring systems. The coexistence of rings and small
satellites thus challenges the premise of a strict boundary between
accreting and nonaccreting regions. We have developed an accre-
tion 1 .odel designed te better examine accumulation processes in
the dynamically transitional regime of outer planetary rings. We
utilize *‘three-body” capture criteria, motivated by the work of
Ohtsuki (1993 Icarus 106, 228-246), to account for the effects of
strong tidal forces on accretion. Our findings indicate that tidally
modified accretion occurs in a relatively broad range of orbital
radii surrounding the classical Roche limit. Tidally modified accre-
tion has a very unique character: for a given particle density, only
bodies which differ greatly in mass can remain gravitationally
bound, as like-sized bodies overflow their mutual Hill sphere. We
find that this constraint greatly litnits the degree of accretional
growth and prevents runaway accretion near the Roche limit.
Numerical simulations show that through the course of tidally
modified accretion, a fragmentation-produced debsis distribution
evolves into a bimodal population, with one element consisting of
a swarm of small, high-velocity bodies and the other composed of
a small number of large “moonlets” on fairly circular orbits. The
latter are precluded from accreting with one another due to the
tidal influences of the planet. Tidally meodified accretion thus offers
a natural explanation for the formation of systems of coexisting
rings and ringmoons from disrupted parent bodies. ¢ 1995 academic
Press, Inc.

1. INTRODUCTION

In the past decade, our growing knowledge of the outer
planets has revealed complex systems of rings and satel-
lites surrounding the gas giants, each with its own unique
properties and intrigue. In each system we observe
moons, dust, and ring particles all coexisting inside what
has classically been defined as the “‘Roche limit.”* For
a recent review, see Esposito (1993). One of the most
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fundamental questions concerning these systems is the
nature of their origin. Early ring formation theories pro-
posed that rings represent residual debris from the era of
ptanet formation which remains dispersed because of the
strong tidal forces of the host planet. Such theories con-
tinue to be challenged by more recent ring lifetime esti-
mates that are much shorter than the age of the Solar
System; current work supports a dynamic scenario for
rings involving a continual source of ring material supplied
through the erosion and disruption of nearby ringmoons
and satellites. For example, Harris (1984) and Dones
(1991} have proposed that rings are the result of the disrup-
tion of satellites and/or captured comets whose reaccumu-
lation was precluded by the strong tidal forces of the
planets. This seems to agree well with the fact that the
known ring systems lay within the classical Roche limit.
Additional recent works by Colwell and Esposito (1992,
1993) have numerically demonstrated that satellite frag-
mentation caused by meteoroid impact can lead to the
formation of narrow rings through a ‘‘collisional
cascade,”

Although debris from satellite disruptions is commonly
considered a source of planetary ring material, recently
the questions of the possible reaccretion of fragmented
satellite debris and of accretion within the Roche limit in
general have been raised by several works. Simulations
by Soter (1971) and Canup and Esposito (1992} have dem-
onstrated that, in the absence of tidal forces, reaccretion
of small disrupted satellites occurs on time scales as short
as 10-100 years. Numerical N-body simulations by Salo
{1992) predict rapid formation of meter-sized aggregates in
Saturn’s A ring. Although the very presence of planetary
rings denies the dominance of rapid accretion, these
works suggest that limited accretion may occur in the
planetary ring environment,

Recently, Colwell and Esposito (1992, 1993) have dem-
onstrated that many of the small moons of Uranus and
Neptune have collisional lifetimes against estimated mete-
oroid impact much shorter than the age of the Solar Sys-
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tem, and it therefore is unlikely that these moons are
primordial. If the existing moons are merely large frag-
ments from earlier disruptions, Colwell and Esposito have
shown that an unrealistically large initial moon population
or a ring/satellite system which is currently near the end of
its life is required to explain the current moon population.
Limited reaccretion would be a possible answer to this
dilemma.

Analysis of Saturn’s G ring has shown that in addition
to a large dust component, the ring also likely contains
many moon-sized parent bodies with lifetimes against mu-
tual collision much shorter than the age of the Solar Sys-
tem (Showalter and Cuzzi 1993). Showalter and Cuzzi
propose that the band of G-ring parent bodies are the
remaining fragments of an earlier disruption of a larger
satellite. However, with this explanation alone, it is diffi-
cult to account for the bimodality of the current ring size
distribution, since fragmentation events typically produce
power-law debris size distributions. Additionally, it has
been difficult to explain why the parent bodies have not
reaccumulated into a single body, since the G ring is
located outside the classical Roche limit.

The history of the inner Neptune satellite system is also
suggestive of accretion inside the classical Roche limit.
Banfield and Murray (1992) have proposed that the cap-
ture of Triton imparted large eccentricities to the precap-
ture interior satellites of Neptune, causing them to occupy
highly crossing orbits. They hypothesize that any original
satellites would be quickly destroyed through mutual col-
lisions and that the existence of the current inner satellites
is due to the accretion of an equatorial disk of collisional
debris. While this seems to account for the nearly equato-
rial orbits of the inner satellites, four of these satellites
are located within the Roche limit.

Thus, while fragmentation plays a crucial role in the
origin and evolution of ring and satellite systems, compet-
ing accumulation processes may also be important. Be-
tween the orbital regime of the inner ring systems (where
tida) forces certainly preclude significant accretion} and
outer regular satellite systems (where accretion proceeds
rapidly} is a transitional realm. The aforementioned works
support a more thorough investigation of tidally influ-
enced accretion in the interest of better understanding the
origin and evolution of rings and moons observed near
the Roche limit.

The main body of work investigating the accretion pro-
cess has been conducted in the context of the accretion
of planets about the Sun. Several extensive numerical
simulations (e.g., Greenberg ef al. 1978, Spaute et al.
1991, and Wetherill and Stewart 1989, 1993) have been
developed to model the accretion of the planets, which
occurred far outside the Sun’s Roche limit, at
~80-6000R . These simulations have made great strides
in the study of the mass and velocity evolution of colliding
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swarms of orbiting bodies, and our work utilizes many of
their advances. However, planetary accretion simulations
ignore tidal forces and use two-body approximations to
model collisional events. Many of these approximations
are invalid in a tida} environment, where three-body gravi-
tational effects are significant.

The nature of the effects of tidal forces on accretion in
planetary rings has been previously examined in
Weidenschilling ef al. (1984) and Longaretti (1989). This
work represents an extension of the study of such tidal
effects by these works and detailed comparisons are made
in Section V.A.

The goal of this work has been to develop a numerical
model for accretion valid in the planetary ring environ-
ment which accounts for the competing tidal forces of the
host planet in a more self-consistent and complete manner
than has been done previously. We examine the effects
of accretional processes in the Roche zone for centimeter-
to kilometer-sized bodies. Our results indicate that: (1)
tidal forces affect accretion in a range of orbital radii
surrounding the classical Roche limit, (2) accretion under
the influence of tidal forces has a general character much
different from that of accretion far away from the primary,
and (3) tidally modified accretion offers a natural explana-
tion for the coexistence of moonlets and ring material.
Section II {as well as Appendices A and B) describes the
details of our numerical model, Section 111 presents our
numerical results, Section IV discusses an analytic esti-
mate of steady-state populations, Section V compares our
results to related previous work and discusses implica-
tions for specific ring/moon systems, and Section VI pres-
ents our general conclusions.

II. MODEL DESCRIPTION

Our approach is to simulate the mass and velocity evo-
lution of a colliding swarm of particles with a discretized,
probabilistic model spanning a broad distribution in size.
While N-body simulations (see Salo 1992, Ohtsuki 1993)
follow individual particles, we calculate average collision
rates for binned intervals of a continuous mass distribu-
tion. These rates determine the mass and kinetic energy
evolution of the swarm through accretion, avoiding severe
computing constraints on the number of bodies that can
be considered.

We model the evolution as a time-dependent Markov
process. A Markov process is a stochastic process without
memory; the evolution of a Markov system at any time
depends only on the state of the system at that time and
not on the history of how the state was achieved. The
evolution of a Markov system is described by probabilities
for transition between all possible states of the system; if
these probabilities evolve with time, the process is called
“time-dependent.”” In general, the Markov formalism is
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a natural means for describing the evolution of systems
driven by probabilistic random events. In our model, the
“‘states™ for the accreting material of this stochastic sys-
tem are the bins in mass which span the size distribution
of the accreting objects. At an initial time a vector de-
scribes the distribution of the total mass among these size
bins. For each time step we calculate the probabilities of
mass transfer from one bin to another by an accretional
collision. The set of these probabilities for the given time
interval forms a ‘‘transition matrix’’ for transfers among
the states of the system. Multiplication of the present
vector by this matrix yields the expectation values of the
size distribution after one time step.

Previous accretion codes have computed mass transfer
rates between mass bins. By adopting a Markov approach,
we have in effect translated these rates into probabilities
for mass transfer. Our method tracks expectation values;
these may differ from actual realizations if the number of
objects is small. Our approach offers an organized, easy
to understand algebraic structure and allows us to readily
examine the likelihood of accumulation for a range of
masses. Additionally, the Markov approach allows us to
easily prohibit unphysical collisions (such as those which
would lead to the formation of a body with a mass greater
than the total mass) and to rigorously conserve mass.
Thus our simulation avoids many of the defects of purely
statistical treatments of accretional growth which have
recently been discussed by Tanaka and Nakazawa (1994).

A. Mass Evolunon

This model considers only particle growth through ac-
cretionary processes. Fragmentation and erosion pro-
cesses are ignored. In general, collisions in and near ring
systems will occor with impact velocities in the cm/sec
to m/sec range, too small to fragment competent natural
objects. However, loosely accumulated material may be
knocked off during nonaccreting collisions, and some pro-
duction of debris via erosion is likely to occur. A more
extensive discussion of this matter is contained in
Section IV.

1. Representation of the population. The evolution of
the mass distribution of a population of accreting bodies
can be described by the coagulation equation. The integro-
differential form of the coagulation equation is

1 [m %
%nm = EL JV!.rn'r"wrn*m'A‘m'.m—m'd’n’ - nmJ;J nm’Am.m’Am,m’dmle

1)

where n,dm represents the number of bodies with mass
between m and m + dm and A, ,,_,. is the probability
that a collision resulting in accretion between mass m'
and mass (m — m’') particles occurs per unit time (e.g.,
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Wetherill 1990). The first integral represents the formation
of mass m particles through collisions involving mass m’
and (m — m') particles. The factor of 1/2 ensures that the
same collisions are not counted twice. The second integral
represents the loss of mass i particles as they collide and
accrete with all other particles.

We model the integrodifferential coagulation equation
using a Markov process matrix representation, consisting
of a time-evolving state vector, S, and a transition matrix,
T. The state vector describes the logarithmic mass distri-
bution of a system of particles at a given time. The kth
element of this state vector is the total mass contained in
particles whose mass lies between 2*M, and 2¢°'M_,
where A, is an arbitrary unit mass. If M, is defined as
the total amount of mass in the &kth bin of S, then M; is
given by

M, = f " ' 2

iy

where m; and m,,, are the lower and upper mass limits,
respectively, of the kth bin, and #,, is the mass distribution
across the bin. We define n,, to be a differential power
law of the form

n,dm o« m”ndm, (3)
where g,, is the mass differential exponent. We compute
both collision probabilities and mass transfer between
bins based on integration of this continuous mass distribu-
tion within each mass bin. The mass distribution for a
nonfragmenting, accreting system has been shown to
asymptote to g, = 1.55 % .15 for all but the largest bodies
in a system, whose mass distribution is characteristically
much shallower (Zvyagina and Safronov 1972). With this
in mind we have chosen g,, = 1 for all mass bins as a
reasonable approximation; this choice has the added ben-
efit of simplifying many of the collisional integrals de-
scribed in Appendix A.

The final bin of our state vector is a discrete mass bin,
which describes particles whose mass equals that of the
total amount of mass in the simulation, M,,,. If our state
vector contains ¥ mass bins, then the expectation value
of the number of bodies in bin ¥, Ny, is always a number
between 0 and [. If all the mass in a simulation were to
accrete into a single body, Ny would equal exactly one.
Mass contained in the final bin does not collide with itself
or with mass contained in any other mass bin, since in a
real system the last bin contains a body only when all
other bins are empty.

The transition matrix, T, regulates mass transfer be-
tween bins of the state vector. The (i, k) element of the
transition matrix, T{, k), is the probability that a unit
mass will be transferred from bin i to bin & in one time
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FIG. 1. Comparison of analylic (solid) and numerical {dashed) solu-

tions to the coagulation equation for 4,, . = B(m + m') at four stages:
7 = 0, 3, 6, and 9. Here 7 is a dimensionless time defined as gemy,
where g is the collision frequency, ¢ is time, my is the total amount of
mass in the system. Plotted on the x axis is the lower limit of the mass
bin divided by the smallest mass in the simulation; the y axis gives the
total mass of particles found in the bin normalized by the total amount
of mass in the system.

step as a result of accretion. Accordingly, T(k, k) is the
probability that mass in the kth mass bin will remain in
the kth bin during one time step. The transition matrix
elements are derived in Appendix A. The evolution of the
system of particles through one time step is found by
multiplication of the transition matrix by the state vector.
Time step sizes are adjusted so that no more than 10% of
the mass contained in any mass bin experiences a collision
during one time step. This ensures that during a single
time step particles are unlikely to undergo more than one
collision and that the state vector will not change enough
during a time step to significantly affect the transition
probabilities computed for that time step.

Our state vector thus describes the stochastic evolution
of the logarithmic mass distribution of a system of parti-
cles at a given time. The kth element of the state vector
represents the amount of mass contained in particles rang-
ing in mass from m, to 2m;. Since S(k) is an expectation
value, it is equivalent to the average amount of mass in
this range that would be calculated from a large number
of Monte Carlo simulations {see Kemeny and Snell 1960,
Esposito and House 1978).

2. Comparison with analytic results. The coagulation
equation is analytically solvable for several forms of the
collisional cross section, A,,,.. Figure 1 compares our
Markov process formalism of the coagulation equation to
analytical results for the **sum-of-the-masses’’ case, with
A, = B(m + m'), where 8 is a constant. The initial
condition for this simulation is a steeply peaked exponen-
tial distribution given by
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dn _ N o imy
dm m, ’

(4a}

where n, is the initial number of particles and m, is the
average initial mass (Safronov 1963). The discretized ini-
tial mass distribution for our Markov method is obtained
by integrating Eq. {4a) over the width of each mass bin.
The analytic solution to Eq. (4a) is (Safronov 1963)

2
n ge—m:’mo(l—\/ng)
n(m,n) = 2 , {4b)
2V (mim (1 — gy
where 7 is the dimensionless time defined as
» = pmyt, (4c)

where my is the total amount of mass, and g is the fraction
of bodies remaining at a given lime ¢. Figure 1 is plotted
in a format similiar to comparisons done by Ohtsuki et af.
(1990) and Wetherill (1990). When compared to analytical
results, our numerical results show an “‘artificial accelera-
tion’" of accretional growth, a well-documented trait of
simulations using logarithmically spaced fixed mass bins
(sce Ohtsuki et al. 1990, Wetherill 1990). Our agreement
with analytic results is slightly better than that found by
Ohtsuki ef al. (1990) for a comparabie bin spacing; this
is due to the fact that we integrate over the mass distribu-
tion in each mass bin instead of simply assigning a mean
arithmetic mass to each bin. However, we still experience
considerable acceleration, since mass which enters a bin
is distributed by our simulation across the entire bin width
with a relatively shallow distribution. The problems of
artificial acceleration have been largely solved by both
the Wetherill and Stewart (1989, 1993) and the Spaute et
al. (1991) models; the former utilizes adjustable bin widths
while the latter considers a variable slope for the mass
distribution in each bin based on the population in neigh-
boring bins. Both models require far more complicated
numerical treatments than the approach used in this work.
Despite the spurious acceleration of accretional growth
that is associated with our fixed-bin system, our numerical
results demonstrate that neither complete reaccumulation
nor runaway accretion occur in a tidal environment (see
below). Adopting a more accurate and complex approach
such as those of Wetherill and Stewart or Spaute et al.
would only strengthen this basic conclusion. With this in
mind, we restrict our attention to more general statements
about accretion outcomes.

3. Collision frequency determination. Approaches for
determining collision frequencies range from explicit orbit
integration for few-body systems to averaging schemes
for many-body systems. We have used a ‘‘particle-in-a-
box" (hereafter PIAB) approximation to estimate colli-
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sion probabilities between debris particles; this approxi-
mation and many derivatives thereof have been widely
used in accretion simulations (e.g. Greenberg et al. 1978,
Spaute et af. 1991, Wetherill and Stewart 1989, 1993,
Weidenschilling ez al. 1984). The PIAB approach assumes
that within a “*box’’ traveling on a circular orbit about a
primary, a system can be treated as an ideal gas whose
particles have relative velocities which are determined by
the particles’ random motion. This random motion can
be described by a particle’s radial and vertical epicyclic
excursions from local mean circular motion, given by

32,14
Se +21, (5)

Upaq = afl
where a is the orbital semimajor axis, () is the orbital
frequency, and ¢ and { are the orbital eccentricity and
inclination (Lissauer and Stewart 1993). Equation (5) as-
sumes the epicyclic approximation, thatise, i <€ 1. Inthe
PIAB approximation, each particle is assumed to encoun-
ter a proportionally representative sample of the popula-
tion of the swarm during a time step.

The PIAB approximation is valid when encounter ve-
locities are determined by random motion and the effects
of Keplerian shear are negligible. Numerical N-body sim-
ulations (e¢.g., Petit and Henon 1986) and analytic work
(Greenberg et af. 1991) have shown that the PIAB collision
rates are valid when the relative velocity of colliding parti-
cles due to their random motion is greater than about
twice the shear velocity across their mutual Hill sphere,
The radius of the mutual Hill sphere of two bodies is given
by

(6)

m+ mr 1/3
Ryy = a(3M ) )
plan

where M, is the mass of the planet (Nakazawa and Ida
1988). A “*Hill velocity” can be defined as vy = QRyy,.
We consider the PIAB approximation to be valid when

Urel = 2. 170 (7

where v, is relative encounter velocity due to random
motion, Equation (7) is equivalent to the Greenberg ef al.
(1991) Eq. (11).

Using the PIAB representation, the probability that two
particles of mass m and m' will collide and accrete per
unit time is

QT 1 Urel

Amm =5 WH ®)

where a is the probability that the collision will result in
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accretion, ¢, . is the collisional cross section, and W
and A are the mutual scale width and height of the ‘*box”’
occupied by the particles.

We use a geometric cross section enhanced by two-
body gravitational focusing as our collisional cross
section,

3 213 UZ
= (Z) 7711"3p-"21’3(ml!‘3 + mf]."?!)z(l + _%), (9)

rel

T’

where p is the particle density and v, is the mutual escape
velocity of the colliding particles (e.g., Greenberg ef al.
1991). The two-body gravitational focusing expression
agrees well with numerical N-body simulations for the
range of velocities over which the PIAB approximation
is valid (see Greenzweig and Lissauner 1990, Fig. 8a). We
assume that particles collide at random orientations, so
that their relative velocity is given by

— (2 23172
Ul = (Uran + vran)

(10)
We also assume an isotropic dispersion of v, so that
the mutual scale height and width for two particles are
given by

1 .
H~ W~ o (W + o) (11)

(Stewart ef al. 1984). The determination of « is described
in Section II.C.

B. Velocity Evelution

In addition to following the mass evolution of the
swarm, we also track velocity evolution. The particles in
each mass bin are assigned a mean kinetic energy, {(v%,),
which evolves with time as a result of physical collisions
and gravitational encounters. We utilize the work of Stew-
art and Wetherill (1988) to account for the change in ran-
dom velocity which a given mass bin experiences per unit
time as a result of viscous stirring due to gravitational
encounters, viscous stirring due to inelastic collisions,
energy damping due to inelastic collisions, and energy
exchange due to dynamical friction (their Egs. (9a)-(9d)).
Stewart and Wetherill adopted two-body approximations
to derive their velocity evolution expressions for gravita-
tional encounters. In a tidal regime, the range of impact
parameter over which such approximations are appro-
priate is much smaller than in typical planetary accretion
scenarios. As bodies fill an appreciable volume of their
Hill sphere, physical collisions become more likely than
scatterings during close encounters (Canup et al. 1993).
Consequently, velocity evolution in a tidal regime is typi-
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cally dominated by the effects of collisions. In the Stewart
and Wetherill formalism, the magnitude of velocity evolu-
tion due to viscous stirring and dynamical friction is pro-
portional to In A, where A is approximately the ratio of
the maximum scale height of the interacting bodies to
their collisional cross section, In a tidal environment, the
scale height is often not much larger than the Hili radius,
and A approaches 1. More distant encounters, neglected
by the Stewart and Wetherill treatment, will be more
significant in a tidal environment than they are for orbits
far outside the Roche radius of the primary. We adopt
the Stewart and Wetherill expressions as first-order ap-
proximations.

We have compared velocity distributions obtained with
our model to steady-state distributions obtained from the
Stewart and Wetherill (1988) equations for several differ-
ent power law mass distributions, and find good
agreement for the case of a nonaccreting swarm at 1 AU
from the Sun (see Lissauer and Stewart 1993, Fig. 1). In
addition to the Stewart and Wetherill (1988) considera-
tions, we have included velocity evolution due to accre-
tion in a manner consistent with their approach (see Ap-
pendix B). We assume that accreting impacts are
completely inelastic, and each accreting pair of bodies is
assigned a random velocity equal to the center of mass
velocity of the two bodies prior to impact, given by

2 2 4 25\1/2
m-+ v, m
Ve = ( ran ram ) (12)

{(m+ m)?

{Ohtsuki 1992). The rms velocity of the mass bin where
the newly accreted particle is placed is adjusted according
to Eq. (B3) in Appendix B.

The particles described by a given mass bin will, in
reality, exhibit a distribution of velocities. Greenzweig
and Lissauer (1992) have shown that approximating such
a distribution by a single rms velocity results in the under-
estimation of collision rates by a factor of ~3. Since we
are more concerned with the mass distribution produced
than the exact length of time taken to produce it, a single
velocity per mass bin is adequate for our purposes.

C. Accretion Criteria

Previous accretion simulations have utilized a simple
two-body approximation to determine when collisions re-
sult in accretion. In free space, two bodies that collide
will remain gravitationally bound if their rebound velocity
is less than their mutual escape velocity,

Ure < Uese
(13)

Vet = EVimp>

where v, is the relative rebound velocity, vy, is the
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relative impact velocity, and & is the coefficient of restitu-
tion. In the two-body approximation, the impact velocity
is given by

2 2

Uirnp = Urel + Ugsc’ (14)

where v, is the relative velocity of the particles at infinite
separation. Equations (13) and (14) yield the capture crite-
rion used by Greenberg et al. (1978), Spaute et al. (1991),
Wetherill and Stewart (1989, 1993), and Weidenschilling
et al, (1984):

2
Uesc

2 2
Uese + Ul

(15)

€< Egigap =

Equation (15) defines a critical maximum value of the
coefficient of restitution, e ;5 for accretion.

While the two-body capture ¢riterion is well suited for
accretion far outside the Roche limit, it is not valid in
tidal environments. In order to better model accretion
in the Roche zone, we have implemented “‘three-body”’
capture criteria after the work of Ohtsuki (1993), as de-
scribed below. Previous works which have examined the
effects of tidal influences on accretion (Longaretti 1989
and Weidenschilling et al. 1984) have adopted a *‘force”
approach, defining a range of orbital radii over which
two bodies initially in contact and at relative rest will
experience a net attractive force. Here, we derive tidal
capture criteria from an erergy perspective, considering
both relative kinetic and potential energies in a three-
body formulation.

The relative motion of two bodies in orbit about a pri-
mary can be described by the Hill approximation, in which
the motion of orbiting bodies is described relative to a
coordinate system rotating on a Keplerian circular orbit.
In this coordinate system, the x axis points radially out-
ward, the v axis points tangent to the circular orbit, and
the z axis is normal to the orbital plane. Typically, Hill’s
equations are written in nondimensionalized form, with
time scaled by 7! and length scaled by Ry;;; velocities
are correspondingly in units of vgy. The linearized equa-
tions of relative motion are

¥ =2y +3x— 3x/r}

y=—2x—3y/r (16)

i=—z—3zlr},

where x, y, and z are the relative coordinates in the rotat-
ing frame and r = (x* + y? + z})""? (Nakazawa and Ida
1988). Equations (16) preserve the energy integral, often
called the Jacobi integral,
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FIG. 2. The Hill potential for the z = 0 plane: units are in Hill units.

=1 5 )+ Ulx,y, 2, (a7
where U(x, v, z) is the Hill potential:
-3, 1, 3 9
U(X,yaZ)— 2x2+22 r+2' (18)

Here E represents the total energy in the rotating frame.
The first two terms of U account for the tidal potential, the
third represents the mutual gravity between the orbiting
objects, and the constant 9/2 has been added so that U
vanishes at the Lagrangian points, (x, y, z) = (=1, 0, 0)
(Nakazawa and Ida 1988). Figure 2 shows the Hill poten-
tial in the z = 0 plane. The I/ = 0 contour line defines
the Hill “*sphere,”” which is actuaily lemon-shaped with
a half-width of Ry in the radial direction, 2/3Ry,; in
the azimuthal direction, and =0.64 R, in the vertical
direction. Since the &/ = 0 contour line is closed, two
objects cannot escape from their mutual Hill sphere if
their total relative energy (given by Eq. (17)) is negative
after their collision (Ohtsuki 1993). This condition ¢an be
used 1o derive a three-body capiure criterion.

When two orbiting bodies are far apart (r = «} the
Jacobi integral associated with their motion can be ex-
pressed in terms of their instantaneous relative orbital
elements,

(ch+ i) — 267+,

E.= g7 T2

(19)

b2 —

where ¢y and iy are the Hill eccentricity and inclination,
respectively, and b is the scaled separation in semimajor
axis (Ohtsuki 1993). Immediately before the two bodies
collide, E is still given by E_,
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3
p

—p =lp_ 3o, 1. 3.9
E=E.=30 - x+ta5-~+3, (20)

where v; is the scaled impact velocity, r, is the scaled sum
of the particles radii,

ry = (r + )Ry, (21)
and x,, y,, and z, are the coordinates of the impact point,

such that x} + y2 + 22 = rZ (Ohtsuki 1993). Equation (21)
can also be expressed as

r =I_2231;3(P)—”3 [

P a ;; (1 + M)]/S’

(22)

where R, and p, are the radius and density of the planet,
and u is the mass ratio of the colliding objects, where
0 < u < 1 (Ohtsuki 1993).

At this point we deviate from Ohtsuki (1993), who ne-
glects the two tidal terms in Eq. (20), as we consider
the full three-body potential. If two bodies collide with
random orientation, averaging Eq. (20) over all orienta-
tions gives their average relative scaled velocity upon
impact:

0 = 2E, + 6/r, + 211 9.

3 (23)

In following with Ohtsuki’s (1993) notation we define

vi=6lr,, (24)
where v, is the scaled mutual escape velocity and
2l 2 3 2
vi=(eh + i) — Zb , (25)

where v, is the relative velocity at (x, ¥, z) = (0, 0, 0} in
the unperturbed (neglecting mutual gravity) solution to
Egs. (16). For the PIAB regime, random motions domi-
nate over motion due to Keplerian shear and v is positive.,
From Egs. (13), (19), and (23)-(25) the scaled rebound
velocity is given by

2 12
v, = S[U%+ U§+§r§] . (26)

We have defined e to represent the net reduction of rela-
tive velocity due to the inelasticity of an impact. It is
related to the normal and tangential coefficients of restitu-
tion, g, and g, respectively, by



338

Eerit

0.2

.4

o

FIG. 3. The critical coefficient of restitution for accretion as a func-
tion of the scaled size of a colliding particle pair (r, = (+ + r')/Ryy),
using the standard two-body approximation (dashed) and the three-body
approach (solid). For collsions between like-sized objects of a given
density, r, varies inversely with orbital radius. For a collision to result
in gravitational accretion, £ must be less than ey

v+ vl 27

[sgug + ssuf]m
8 = - a2 . 3 3
where v, and v, are respectively the normal and tangential
components of the relative impact velocity. This definition
of &, used by Ohtsuki (1993), differs from that of Araki
and Tremaine (1986) and Longaretti (1989), who defined
&, as the change of the relative velocity between the points
of contact of colliding objects. From Eqs. (17), (18), and
(26), the total energy after the collision is then

L1, 2 1,.9
E —EE (U§+v§+§ré)-———§r%+—i,

(28)
If the collision is inelastic enough so that the total energy
after the collision is less than zero, the bodies cannot
escape their mutual Hill sphere. This E' < 0 condition
defines a critical coefficient of restitution from Eq. (28):

_._ [#renri-o
£ Scril,SB - Ug + L’tz) + (2/3)1‘3.

29

The specific choice of impact orientation determines the
coefficient of the r term; here we have assumed random
impact orientation. The r? coefficient is 3 in the case of
impacts occurring in the radial direction, —1 for impacts
in the vertical direction, and 0 for impacts oriented in an
azimuthal direction. Figure 3 shows a comparisonof e »p
(given by Eq. (15)) and &, 35 for a single value of v, as
a function of r,. In planetary accretion scenarios, r, is
typically of order 1073-1072 for collisions of like-sized

CANUP AND ESPOSITO

bodies, and the two-body approximation is reasonable.
As r, becomes appreciable, as is the case in the Roche
zone, the three-body approach is required.

The definition of & 35 yields two requirements for cap-
ture. First, in order for Eq. (29) to be satisfied, e 35
must be greater than or equal to zero, so that

6iry+ 2r1-9=0, 30)
or
r, 0,691, 31)

Second, if Eq. (31} is satisfied, two bodies will remain
within their mutual Hill sphere if € is less than e, 3. In
our model, we consider a coefficient of restitution which
is independent of velocity and mass, and particle pairs
which satisfy both Eqs. (29} and (31} are assuimed to gravi-
tationally accrete through successive inelastic mutual col-
lisions.

Note that when the physical size of colliding bodies
exceeds about 70% of their mutual Hill radius they will
not on average remain gravitationally bound, even if their
collision is completely inelastic. This differs markedly
from the two-body approximation, where completely in-
elastic collisions aiways result in accretion. Equation (31)
is also a more stringent requirement than that obtained
using a force approach to model escape in the radial direc-
tion, which yields an r, < 1 criterion (e.g., Longaretti
1989, Eq. 30). This is somewhat surprising since the Hill
potential reaches a maximum only as one moves radially '
away from the origin. However, escape from the Hill
sphere is also possible azimuthally and vertically, as mo-
tion in the rotating frame tends to follow isopotential lines,
and the Hill *‘sphere’” is actually narrower in these direc-
tions. Equations (22) and (30) define a critical mass ratio
for accretion for a completely inelastic collision as a func-
tion of orbital location and particle density,

(1 + m ~t)1;‘3 ( 1 ”3Rp p)—lﬂ
cri - N 32
1+ ul? 0.691 2 a\p ’ 32

crit p

where p.; is the maximum mass ratio that two bodies
can have in order to remain gravitationally bound after a
completely inelastic collision. In the limit of & = 0, Eq.
(32) takes a form similar to that of the classical Roche
limit:

—-1/3
L2209 (ﬁ) . (322)

Ry P

The ¢oefficient in Eq. (32a) is smaller than the coefficient
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(a) Critical mass ratios for accretion as a function of scaled orbital radius and particle density for completely inelastic collisions

(e = 0). Here p/p, is the ratio of particle to planetary density. Accretion is possible to the left of the appropriate mass ratio curve. The classical
Roche limit for a fluid body with p/p, = 1 is indicated by the dashed line. (b) Critical coefficient of restitution for accretion surface as a function
of mass ratio (») and scaled orbital radius for p/p, = 1. Accretion is possible only for those values where the plotted function is nonzero.

in the classical Roche limit for liguid bodies (2.456) since
here we have considered solid, nondeformable bodies.
Equation (32a) defines a minimum critical density for solid
body accretion, analogous to the critical ‘‘Roche density’’

for fluid bodies:
R, 3
Perin = 9.1 _; Pp-

Values for p;, range from (.54 g/cm? at the outer A ring
to 2.3 g/cm® in the middle of the C ring. These values are
larger than those derived by Longaretti (1989, his Eq.
(30)).

Figure 4a is a plot of the critical mass ratios for accretion
as a function of particle density and orbital radius, with the
classical Roche limit shown for comparison. The critical
accretion curves in Fig. 4a were derived assuming random
impact orientation; a choice of a specific impact orienta-
tion (e.g., a radial impact) shifts the curves slightly along
the x axis but does not change their form. Note that like-
sized (u = 1) bodies are precluded from accreting in a
region that extends well beyond the classical Roche limit,
while low mass ratio pairs can accrete interior to this
limit.

The three-body critical coefficient of restitution also
differs from its two-body analog in the limiting case of
zero relative velocity between the colliding objects. In
the two-body case, if v, = 0, the critical coefficient of
restitution is one. In the three-body case, relative veloci-
ties upon impact will typically be nonzero even for circular
orbits, due to the shear in Keplerian velocities associated
with small differences in semimajor axis. If we approxi-

(32b)

mate lower limit of relative velocity in the PIAB regime
as vy, = 0 then from Eq. (29),

v+ (2132 - 9
Ecril,SB: vz + (2/3)r2 4
< p

which is always less than one in a tidal environment.
Figure 4b is a surface plot of &5 when v, = 0 as a
function of orbital radius and mass ratio for p/p, = 1.
Collisions which reside in the phase space above the sur-
face of Fig. 4b will not typically result in accretion; those
below the surface may result in accretion if the actual
relative velocity of the colliding objects is low enough.
The £ = 0 plane of Fig. 4b yields the critical mass ratio
curve for p/p, = 1 in Fig. 4a.

Table I lists maximum values for accretion of p; and
&.qit.3p for specific locations of planetary rings and satellites
located in the Roche zone for several values of particle
density. Note that even in outer regions where like-sized
bodies can remain gravitationally bound, some degree of
inelasticity is necessary in order for a collision to result
in accretion.

Our analytic capture criteria compare well with numeri-
cal N-body results by Ohtsuki (1993). His Fig. 9 shows
the orbit of a particle colliding with targets of size r, =
(.65 and 0.75; the former leads to accretion after two
impacts, while the latter results in escape after the first
collision, Additionally, capture probabilities obtained
from multiple N-body simulations decrease abruptly from
the r, = 0.6 to the r, = 0.7 case (see Ohtsuki’s Figs. 10
and 11). For the case of zero initial relative velocity and
a coefficient of restitution between 0 and 0.5, capture

(33)
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TABLE I
Critical Mass Ratios and Coefficients of Restitution for
Accretion in the Roche Zone

Particle Densily {g/fcc)

Salellite 24 £S K
Planet or Ring af Ry Merits €erit lerity Corit Herits €erit
Saturn Outer B-Ring  1.95 043, .51 0097, 43 9.0e-6, .22
A-Ring 2.02- 069, .53 .018, 406 1.9e-4, .28
2.27 .39,.60 092, 55 0069, 12
Atlas 2.28 A4, .61 .099, 55 0076, .42
Prometheus 2.31 .64, .61 12, .56 0097, 43
F-Ring 2.32 79, .01 12, .56 010, 43
Pandora 2.35 1, .62 .14, 57 013, 45
Epimellicns 2.51 1, .65 44, .60 036, .50
Janus 2.51 1, .65 A4, .80 036, .50
G-Ring 2.75- 1, .69 1, .G4 .12, .55
2.88 1,.70 1, .67 23, 59
Uranus  Cordelia 1.95 00003, .25 0,0 0,0
¢-Ring 1.95 00053, .20 0,0 0,0
Opliclia 2.10 0045, .36 .00020, .25 0,0
Bianca 2.32 027, 46 050, .38 ¢, 0
Cressida 2.42 .048, .50 011, .42 2.3e-5, .14
Desdeipona 2.45 057, 51 014, 43 6.9¢-3, .21
Juliet. 2.52 083, .53 022, 46 00035, .27
Portia 2.50 12, .54 033, .48 0010, .31
Rosalind 2.73 25, .58 067, .52 0042, .37
Belinda 2.95 1,.62 19, .56 017, .45
Puck 3.37 1, .67 1, .63 1, .54
Neptune  Nailad 1.94 0,0 0,0 0.0
Thalassa 2.02  4.0c-6, .19 0,0 0,0
Despina 2,12 .00063, .28 0,0 0,0
1089N2R 2.15 0010, .30 0,0 8,0
Galaten 2.50 025, 46 0014, .36 0,0
1989N1R 2.53 029, A7 0058, .38 0,0
Larissa 2.97 27, 57 070, 51 0047, .37
Proteus 4.75 1, .76 1, .73 1, .67

Note, The maximum values for the three-body critical coefficient of
restitution (g.;) and the critical mass ratio (s} for accretion at various
satellite and ring locations as a function of the density of the accreting
material. Values were obtained assuming random collision orientation
(see Section II.C for details). At a given location and density, accretion
is very unlikely if the mass ratio (1) of the colliding objects is greater
than g, or the coefficient of restitution (£) is greater than gqy. If p <
He and € < £,y accretion may occur, depending on the specific values
of g and e and the initial relative velocity of the colliding particles.

probability drops from about 80% for an r, = 0.6 collision
to 40% for an r, = 0.7 collision, to ~15-30% foranr, =
0.74 collision (Ohtsuki, Fig. 10). Thus Eq. (31) seems a
good approximation for relatively inelastic (0 < £ < 0.5)
collisions. Ohtsuki also finds that for circular orbits and
r, << 0.5, most collisions result in accretion if &€ < 0.6.
Our Eq. (33) predicts accretion for £ < 0.5 and r, = 0.5.
For more elastic collisions, our capture criteria may define
the limits of accretion less accurately. Ohtsuki’s N-body
simulations for circular orbits with £ = 0.9 show a decreas-
ing capture probability as r, ranges from 0.1 to 1.0, with
near zero capture probabilities for r, = 0.7 (see Ohtsuki’s
Fig. 8). Our Egs. (31) and (33) imply zero capture probabil-
ity in this case for r, > 0.15. The discrepancies between
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our analytic criteria and Ohtsuki’s (1993) capture proba-
bilities for large e are most likely due to our neglect of
specific impact orientation, which plays a more significant
part in determining whether accretion will occur for highly
elastic collisions. The results presented in the following
section are ail for very inelastic collisions, where our
capture criteria agrees well with N-body simulation re-
sults.

III. RESULTS

A. Interpretation of Numerical Results

As is true for all numerical simulattons, the interpreta-
tion of our results merits careful consideration. Inherent
in our statistical approach te accretion is the neglect of
individual particle orbits; we also neglect differences in
mass distribution within a given mass bin. An element of
our mass state vector specifies only the total amount of
mass contained in bodies whose mass falls within the
boundaries of the corresponding mass bin. A mass distri-
bution specified in one of our simulations therefore corre-
sponds to a nearly infinite number of real systems, which
differ in the specific orbital elements and phases of the
orbiting bodies and in the exact way in which mass in a
given bin is distributed among particles described by that
bin. A given mass distribution generated by our modet is
best interpreted as equivalent to what one would obtain
by averaging the mass distributions generated from an
infinite number of corresponding N-body simulations.

B. Initial Debris Distributions

In order to simulate debris distributions produced by
the fragmentation of small satellites, we generate initial
mass distributions based on experimental results of Davis
and Ryan (1990). These experiments have demonstrated
that the debris mass distribution produced by a fragmenta-
tion is best described by a two-component power law
whose cumulative slopes, b, and b,, are a function of the
mass of the largest fragment, f],

0.47
by =—, b
1 \/f-i 2

0.18
=—, (34)
Vi
The parameterizations for the generation of initial debris
distributions described here are the same as those used
by Colwell and Esposito (1992, 1993).

C. Numerical Simulation of Accretion at the
Adams Ring

As aexample of accretion in a highly tidal environment,
we have simulated the evolution of the debris produced
through the fragmentation of a 1-km-radius body at the
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FIG. 5. The mass evolution of a debris swarm at Neptune’s Adams Ring. Here p = 1.5 g/cm’, ¢ = 0.0, and v,,,(r = 0) = 560 cm/sec. (a)
Three-body tidal capture criteria, Mass distributions 1, 2, and 3 shown at ¢ = 0, 300, and 600 years; m, is shown in grams. {b) Two-body capture
criterion. Mass distributions 1, 2, and 3 shown at r = 0, 500, and 3000 years.

orbit of Neptune's Adams ring, 1989N1R. Figure 5a shows
the evolution of the mass distribution of objects larger
than about 10 ¢m in radius using the tidal capture criteria
described in Section I1.C and & = 0. Figure 5b shows
the mass evolution using a standard two-body capture
criterion. The initial mass distribution is the same for both
cases. We have taken f; = 0.5, corresponding to initial
mass differential slopes of g, = 1.66 and g, = 1.23, both
shallower than the ‘‘equal mass per bin” ¢,, = 2 case.
We have assumed the mass distribution within each mass
bin has a differential slope g, = 1 when deriving the
number of bodies in the kth bin, N,. All bins are initially
assigned a random velocity of 560 cm/sec; this nominal
value corresponds to an initial swarm width of 50 km,
derived from numerical simulations of a 1-km satellite
breakup at 1989N1R by Colwell and Esposito (1993). A
particle density of 1.5 g/cm? is assumed.

Figure 5b demonstrates that when a two-body, v,,, <
Ues - Criterion is used the satellite rapidly reaccretes; after
3000 years the probability that the satellite has reaccreted
is near unity. This result is consistent with Soter (1971)
and Canup and Esposito (1992). However, Fig. 5a shows
that when the effects of tidal forces are included, the mass
evolution has an entirely different character. Small bodies
are depleted as they accrete onto bodies whose mass is
much greater than their own (u < 0.0058 for accretion
from Tabie 1); the depletion rate of the small bodies as they
accrete onto larger bodies is thus relatively insensitive to
the mass of the small bodies, and the initial slope of the
debris distribution is preserved. For bodies whose mass
is greater than about 6 x 10'! g, the depletion rate de-
creases with increasing mass, as there are fewer bodies
in the swarm large enough to satisfy the p < p; accretion
criterion. The largest initially occupied mass bins do not

experience any significant change in occupation number;
while they accrete smaller bodies, they are precluded from
accreting with one another due to the influence of tides.
The resulting mass distribution is bimodal in character,
with a large number of centimeter-sized bodies and a
few tens of 100-m to kilometer-radius bodies. The simula-
tion was ended when velocities were low enough to make
the PIAB collision rate invalid.

Velocity distribution evolution for the simulations de-
scribed in Fig. 5 is shown in Fig. 6. Figure 6a is from the
simulation using tidal capture criteria; Fig. 6b is from the
simulation which used a two-body capture criterion. In
general, random velocity decreases with particle size. In
both cases, velocity evolution is dominated by the effects
of collisions for bodies of mass =10 g. Typical values
for A for collisions between large (r = 10 m) bodies in
the swarm are on the order of 1-100. For the simulation
using the tidal capture criteria we find the Iargest frag-
ments on nearly circular orbits, surrounded by a high
velocity *‘swarm’’ of 10-cm to 10-m-radius bodies. The
slight upturn in random velocity for the final two mass
bins in Fig. 6a is in part due to the fact that the little mass
which is found in these bins has entered the bins through
collisions of smaller, high-velocity particles with bodies
found in the third largest bin. The largest bins in this
case also lack a population of larger bodies with which
to rebound, which will tend to cause their rms bin veloci-
ties to be somewhat higher than smaller neighboring bins
{conversely, in a stirring-dominated environment, such
end effects will tend to lower the velocities of the largest
bodies due to the absence of larger gravitational stirrers).
In the simulation shown in Fig. 6b, mass enters the final
two bins primarily through accretion between low-veloc-
ity objects found in the third largest bin (which is pre-
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FIG. 6. Velocity distributions corresponding to the simulations shown in Fig. 5. All mass bins were initially assigned a random velocity of
560 cm/sec. (a) Velocity distributions 1 and 2 using the three-body tidal capture criteria at + = 100 and 600 years. (b) The same for the two-body

capture criteria simulation at t = 500 and 3000 years.

cluded by the tidal capture criteria), leading to lower val-
ues of v, for the final two bins in this case. After ~500
years, velocity damping has had a much less significant
effect in the simulation using the two-body capture criteria
than for the simulation using the three-body capture crite-
rion. Since we have considered completely inelastic colli-
sions, a pair of bodies is assigned the same postimpact
random velocity (v,,) whether they rebound or accrete.
However, in the two-body case, collisions lead to rapid
accretional growth, producing larger bodies which are
more effective gravitational “*stirrers.” In the three-body
case, damping due to inelastic rebounding dominates and
accretional growth of stirrers is limited.

Figure 7 shows the mass evolution for a 1-km moon

—27 \

4 108 108 1p10 L

1016

FIG. 7. The mass evolution of a debris swarm at 1989N1R. Same
conditions as in Fig. 5a, except that here the mass fraction of the largest
fragment was 0.0623, corresponding to a highly catastrophic disruption.
Mass distributions 1-4 are shown for ¢ = 0, 45, 90, and 100 years.

disrupted again at 1989NI1R, but here the mass of the
largest initial fragment was taken to be about 6% of that
of the original moon (f; = 0625}, representing a highly
catastrophic disruption. From Eq. (34), the initial distribu-
tion has differential power-law indices of g; = 2.88 and
g, = 1.72; thus the high-mass leg of the initial distribution
is steeper than the “*equal mass per bin”’ case. Here again
there is essentially no accretional growth of bodies larger
than the largest initial fragment. Bodies contained in the
largest 8 bins (m, = 10" g) are still unable to accrete with
one another due to tidal constraints. The amount of mass
in these bins increases more in this case than in the f; =
0.5 case because here there is a much greater amount of
mass found in smaller particles which can accumulate
onto the largest bodies. The bimodality of the final mass
distribution is very prominent in this case, with a complete
depletion of objects of ~10 m in radius (~5 x 10 g). The
depletion is more extreme here than in Fig. Sa because
of the very steep distribution of the largest bodies onto
which the smaller bodies can accrete. The “‘bump’’ in the
mass distribution for ¢ = 100 years at ~4 x 10" g is due
ta the accretion of the ~10-m bodies onto ~170-m bodies.
Steep (g, = 2} mass distributions may thus lead to some-
what greater accretional growth of the largest bodies in
a tidal environment, since they provide a proportionally
greater number of smaller bodies with which the large
bodies can accrete. However, even in the case of steep
mass distributions, accretional growth of the largest bod-
ies is very restrained by strong tidal effects.

Mass distributions obtained for nonzero coefficients of
restitution are similar to those shown in Figs. 5 and 7 if
e = 0.4, In this case, all collisions rebound until velocities
are damped to the order of the escape velocity of the
largest objects. Accretion of low mass ratio bodies then
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begins in the manner described above, with the difference
that accretion among the smaller bodies in the swarm
does not typically occur due to their higher relative (and
thas higher rebound) velocities. For & > 0.38, we find no
accretion at 1989N1R for any 1.5 g/em® density bodies.
Table I may be used as a general guide for the upper limit
of collisional elasticity which can lead to accretion at
various ring and satellite locations.

Our results demonstrate that as a fragmentation-pro-
duced debris distribution undergoes tidally modified ac-
cretion it can evolve into a distribution with a bimodal
character. Runaway accretion or reaccumulation of the
original satellite is not observed. Figures 5a and 7 also
show that in a tidal regime there exists a mass range of
bodies over which the effects of accretion do not greatly
change the character of the mass distribution. This range
ts a function of the mass of the largest body in the swarm,
the particle density, and the distance from the planet and
is approximately given by

ME ey X My, (35)
where m, is the mass of the largest fragment in the swarm
and p is given by Eq. (32). The range may extend to
somewhat lower masses than indicated by Eq. (35) for
the case of highly catastrophic disruptions or when initial
debris distributions are steeper than the equal mass per
bin case. Thus, models of ring formation or of the disrup-
tion of satellites found in the Roche zone, such as those
of Colwell and Esposito (1992 and 1993), may reasonably
ignore accretion processes for the largest bodies in a
swarm,

Tidal effects on accretion can also be understood in
the context of their affect on the algebriac structure of a
Markov chain, When all collisions in a closed system
result in accretion, all mass will, theoretically, eventually
accrete into a single body. In the Markov formalism this
is represented by a Markov chain with a single absorbing
state—the mass bin which describes objects whose mass
is the total amount of mass in the system. Effectively,
tidal effects on accretion result in the formation of multiple
absorbing states, whose range is specific by Eq. (35) (Es-
posito and Canup 1993).

Qur results combine well with those of Colwell and
Esposito (1992, 1993) to suggest a possible origin scenario
for narrow rings and related ringmoons. Parent satellites
initially accumulate outside the Roche zone; those found
at or within the corotation orbital radius tidally evolve
inward toward the planet. Disruption by meteoroid impact
will occur on time scales much shorter than 4.5 billion
years (Colwell and Esposito 1992), and the debris pro-
duced will rapidly spread into a narrow ring due to phase
mixing (Colwell and Esposito 1993). If the disruption o¢-
curs in the Roche zone, reaccretion of the debris will
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occur only between bodies which differ greatly in mass.
This results in the formation of a bimodal mass distribu-
tton, consisting of a swarm of high-velocity small bodics
and the largest initial fragments from the disruption. For
highly catastrophic disruptions, the orbital specifics of the
largest few objects might result in ring confinement, as
in the case for the & ring or 1989N1R. For less energetic
disruptions (which have more large fragments of similar
mass), the largest fragments could form a moonlet belt,
acting as both a source and a sink to ring particles, as in
the case of the G ring of Saturn. Although our numerical
model is not sufficiently advanced to differentiate between
such specific outcomes, they are consistent with the char-
acter of the mass and velocity distributions produced by
our simulations.

IV. ANALYTIC ESTIMATES OF
STEADY-STATE POPULATIONS

In our numerical model we have considered only accre-
tionary growth processes: erosion and fragmentation pro-
cesses have been ignored. While coherent bodies will not
undergo significant fragmentation for impact velocities
considered in this work, some ergsion of previously accu-
mulated debris is likely to occur during nenaccreting colli-
sions. The largest bodies in a swarm will therefore act as
sources, as well as sinks, for smaller particles. The debris
swarms studied here will eventually achieve a steady-state
balance between the generation of ring particles through
collisional erosion and the “‘sweep up’’ of ring particles
as they accumulate onto the ringmoons. The ringmoons
will experience mutual collisions but will not accrete with
one another due to tidal restrictions in the Roche zone.

The properties of the steady state between particle ac-
cumulation onto the ringmoons and ejection of particles
during nonaccreting collisions may be analytically esti-
mated. The rate at which “*particles™ (i.e., those bodies
which are described by the transient states of our Markov
chain) are accreted onto ‘‘ringmoons’’ (i.e., those bodies
which occupy absorbing states of our Markov chain,
whose mass range is given by Eq. (35)) may be written

de__aNf
dt T,

[+

(36)

where N; is the number of free particles at time f, « is
the accretion efficiency per collision, and 1/T, is the rate
at which a free particle collides with any ringmoon. The
rate of production of free particies during nonaccreting
collisions between the ringmoons is

dN; _oN,

T (37
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where N, is the number of particles which have accreted
onto ringmoons at time ¢, & is the fraction of a ringmoon’s
regolith which is ¢jected during a nonaccreting collision
with another ringmoon, and 1/7, is the rate at which a
ringmoon collides with another ringmoon, so that T,/5 is
the lifetime of a particle in a ringmoon’s regolith. At
steady state the rate of production of particles will equal
the rate of sweep-up of particles. Let X; be the fraction
of particles at time ¢ which are in free orbits. Then at
steady state,

oy 8(1 - Xp
T. T

c r

(38)

or

al. |}
Xeg= [1 + STC] , 39
where X is the fraction of unaccreted particles at steady
state.

The collision rate between a high-velocity particle and
the ringmoons (T,) is accurately described by the PIAB
collision frequency. A realistic collisional rate among the
ringmoons (7,), which are often few in number, requires
more careful consideration. Velocity evolution in a swarm
results in the largest bodies in the swarm occupying nearly
circular and coplanar orbits (e.g., Wetherill and Stewart
1993). The largest bodies in the swarm will become physi-
cally isolated from one another if their radial separation
exceeds their range of gravitational influence. Wetherill
and Stewart (1993) account for noncrossing orbits of the
largest bodies in their collision rate determination by
assuming that bodies contained in mass bins for which
N;R, < W are isolated from one another. Here N, is the
number of bodies in mass bin {, W is the width of the
swarm, and R, is the gravitational range of a body, defined
by

R i) = 2 Ryuli, i) + 2ae,, (40)

V3

where ¢; is the mean eccentricity in bin i, While this treat-
ment still neglects the potential for resonances which
could preclude collisions between moonlets with orbital
separations less than R, it represents a better approxima-
tion than a straight PIAB approach. We note that the use
of the PIAB collision frequency to model collisions among
ringmoons in our numerical model does not significantly
affect the results of our simulations, since ringmoon colli-
sions do not result in accretion.

The accretion efficiency upon collision, «, is probably
close to unity for collisions which satisfy our capture
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criteria. Numerical simulations by Ohtsuki (1993) show
accretion probabilities greater than 809 for collisions with
ro = 0.7 and £ = 0.5. Collisions of small bodies into
regolith-covered surfaces are likely to be much more in-
elastic than this, and as such will have even higher accre-
tion probabilities. A vatue of & = 1 is assumed for colli-
sions which satisfy our two capture criteria.

A realistic value for § is probably significantly smaller :
than unity. When two regolith-covered moonlets collide, -
the moonlet cores will likely bore through their partner’s
regolith layer until the cores impact. At low impact veloci-
ties the solid cores will not experience significant fragmen-
tation or erosion, but as regolith is compacted and dis-
placed at the impact site ejection of loose regolith material
will occur. Ejection due to low-velocity impacts into rego-
liths has not been well-studied by previous impact experi-
ments, which have focused on high-velocity impacts and
catastrophic disruptions. However, some basic compari-
sons can be made. A low-velocity impact into regolith is
most analogous to the so-called “‘gravity regime’’ of crater
scaling, where the internal strength of the ejected material
isignored (e.g., Asphaug and Melosh 1993). If we consider
a head-on collision between two like-sized ringmoons, the
total volume of regolith which is displaced on one moon
due to the collision is approximately given by

[orosf, R-d
Ve {3R(1 R)]

where R is the radius of the ringmoons and d is the depth
of the regolith. Some portion of this volume of ejecta will
escape from the vicinity of the ringmoons, while the rest
will reimpact. In the gravity regime, the fractional volume
of ejecta exceeding escape velocity can be expressed as

(41

VESC_ < UBSC )_e

=k == , 42
Rc 3 vg—}ac ( )
where R, is the radius of the “‘crater’” formed in the
regolith, v, is the escape velocity, g is the gravity field,
and k; and e, are experimentally determined constants
{Asphaug and Melosh 1993). Equation {(42) predicts a max-
imum fraction of ejecta escaping of about 0.2 for values
of k, and e, corresponding to impacts into sand or rock,
assuming a crater diameter equal to the target radius (see
Asphaug and Melosh 1993, their Fig. Al).

In the Roche zone, the true escape velocity from the
surface of a moon can be less than the two-body escape
velocity, depending on ejection orientation. Monte Carlo
simulations of ejecta produced by impacts into Phobos
{located inside the classical Roche limit) which account
for the tidal effects of Mars show appreciable escape prob-
abilities for velocities as low as ~0.35v,,. (Banaszkiewicz
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corresponding steady-state average regolith depth on a ringmoon.

and Ip 1991). Using this value as an estimate for average
escape velocities near the Roche limit yields the upper
limit on the fraction of ejecta escaping to be about 0.74
of the total ejected volume. The fraction of the total rego-
lith on a ringmoon which is gjected upon mutual collision
is therefore estimated to be

Ve
8~ 074 —5—~0.12,

(43)
which is independent of R and J assuming a uniform
regolith depth or a ringmoon.

For the simulation shown in Fig. 5a, the Wetherill and
Stewart (1993) collision criterion yields the time for a
ringmoon to collide with another ringmoon (7,) to be
about 1100 years. The time scale for a particle to collide
with a ringmoon (7.} is about 650 years. Figure 8a shows
that in this case, X, varies between 0 and 0.38 for 3
between 0 and 1, with 8 = (.12 corresponding to X, =
0.06. Figure 8b shows the average regolith depth on a
ringmoon at steady state, with § = 0.12 corresponding to
a depth of about 8 m. For comparison, after 600 years the
remaining fraction of free particles in the mass distribution
shown in Fig. 5a is about 0.08. It thus seems unlikely
that the debris swarm at the Adams ring would evolve
significantly beyond the final mass distribution shown in
Fig. 5a, due to competing erosional processes, and our
results approximate the steady-state distribution.

The debris swarm evolution shown in Fig. 7 is more
difficult to interpret using our basic analytic approach. In
considering a balance between the rate of accretion of
particles onto the ringmoons and the rate of erosion of
particies from the ringmoons we have made the simpli-
fying assumption that particles collide more frequently

with ringmoons than with other bodies found in the *‘tran-
sient”” mass states. This is a valid assumption for distribu-
tions which have most of their mass contained in the
largest bodies, as in Fig. 5. However, in Fig. 7 we consider
a mass distribution whose high-mass end is steeper than
the equal mass per bin case, so that particles accrete most
rapidly onto bodies smaller than the smallest absorbing
state. In this case, although only bodies with mass greater
than about 10'? g are prohibited from accreting onto larger
bodies by tidal forces, accretion of bodies in the mass
range of 10'°-10'% g onto larger bodies is extremly slow,
and these intermediate bodies accumulate appreciable
regoliths before finally accreting onto the ringmoons. De-
termination of steady-state populations in this case re-
quires an incorporation of erosion production on a coili-
sion by collision basis, which is beyond the scope of this
wark.

As a final comment on potential effects of erosional
processes, we note that our analytic approach has ne-
glected any dependence of escape on regolith particle
size. Small regolith particles may be ejected with rela-
tively higher ejection velocities (e.g., Nakamura and Fuji-
wara 1991) and thus may escape more easily and steepen
the steady-state distribution in the small mass end from
that produced by our simulations. Meteoroid impacts into
the ringmoons will also eject regolith. Time scales for
impact of a 10°-g meteoroid onto a ringmoon are about
1{P~10¢ years—much longer than time scales for collisions
between ringmoons (Colwell and Esposito 1990). Al-
though ejection of regolith due to metcoroid impacts will
not be significant for the size range of particles considered
here, production rates of micrometer-sized dust particles
due to meteoroid impacts can be on the order of dust
production rates due to collisions between the ringmoons
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(Colwell and Esposito 1990). This would also lead to a
steepening of the mass distribution for dust-sized particles
relative to that produced in our simulations. Conversely,
large particles in the regolith lie closer to the edge of their
Hill sphere and so, depending on their ejection orienta-
tion, will typically have lower effective escape velocities
than their smaller counterparts. Some replenishment of
the intermediate mass region between the ring particles
and the ring moons relative to that shown in Fig. 7 particu-
larly might therefore be expected.

V. COMPARISONS WITH PAST WORKS

A. Comparisons with Previous Accretion Models

1. Weidenschilling et al. (1984). In the “DEB” (dy-
namical ephemeral bodies) numerical model, Weiden-
schilling ef al. (1984) used a two-body criterion for ac-
cretion and allowed for tidal disruption of particles when
tidal stresses exceeded estimates of internal tensile
strength. The latter condition defines a maximum particle
radius which may exist at a given orbital location as a
function of internal strength, In their numerical simula-
tions, Weidenschilling et al. (1984) did not account for
self-gravity in their tidal disruption criteria. This is a valid
assumption for solid, coherent bodies smaller than about
20 km in radius that have internal strengths much greater
than their self-gravity. However, aggregate bodies formed
through the accumulation process have initially very low
(if any) internal strengths and are likely initially held to-
gether due to self-gravity (Salo 1992, Longaretti 1989).

Our method differs from the Weidenschilling et al.
model in two ways. First, we use three-body capture
criteria as described in Section 11.C. Second, we do not
consider the internal strength of accreting bodies; we in-
stead balance self-gravity against tidal stress. In the DEB
model, the balance of internal strength and tidal stress
results in tidal stresses which increase with size; in con-
trast, the balance of self-gravity and tidal stress is indepen-
dent of size for a given particle density. In the Hill formal-
ism this is expressed by the fact that the ratio of a body’s

* physical radius to its Hill sphere is a function of density,
not of size, We therefore do not place a restriction on the
absolute size which a body of a given density can grow
to at a given orbital location; the growth of bodies is
limited only by our capture criteria.

Our results differ from the DEB model in several funda-
mental respects. First, Weidenschilling et «l. find that
accretion is the dominant result of low-velocity, inelastic
collisions in Saturn’s rings. This is certainly the case when
a two-body criterion for capture is used. However, we
find that this conclusion is changed significantly when the
capture criteria includes the effects of the tidal potential.
Our results show that accretion in most rings occurs only
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between bodies who differ greatly in mass and that buildup
of large objects through the accumulation of many smaller
“building blocks™ is therefore an ineffective process. Nei-
ther this work nor that of Salo (1992) finds gravitational-
based accretion between bodies with a density of solid
ice in Saturn’s D, C, and B rings. We cannot rule out
the possibility of physical mechanisms leading to limited
sticking in these regions.

Weidenschilling et al. proposed that the largest bodies
in rings represent either cohesive fragments or house-
sized aggregate bodies in equilibrium between accretion
and tidal disruption (the DEBs). This work supports the
conclusion that the largest bodies in a ring likely represent
cohesive fragments from earlier disruption events. These
cohesive cores may accumulate smaller bodies, but they
do not grow significantly in size. While their surfaces are
likely to be ““dynamic,”” as smaller bodies accrete and are
knocked off by later collisions, cohesive ice cores are
stable against tidal disruption due 1o their self-gravity in
all regions of Saturn’s rings.

"Weidenschilling et al. also suggest that ring particles
are in an ensembie steady state between accretion of bod-
ies up to a limiting size and tidal disruption. We propose
a potential steady state between accretion of small bodies
onto large bodies and production of small bodies through
external bombardment and mutual c¢ollisions, with tidal
forces dictating the character of accretion which can occur
and the minimum density of gravitationally bound aggre-
gates. The overall character of such a system would
evolve on time scales determined by the collistonal life-
times of the large bodies, that, once disrupted, would be
unable to reaccrete.

2. Longaretti (1989). In his analytical study of the
effects of various physical processes on the size distribu-
tion of particles in Saturn’s main ring, Longaretti (1989)
accounted for tidal effects on accretion using a force ap-
proach. Longaretti considered the case of two radially
aligned particles initially in contact with no relative veloc-
ity and examined when the pair would experience a net
attractive gravitational force in a tidal environment. This
condition defines both a maximum size ratio and a mini-
mum particle density for accretion as a function of orbital
location (his Eq. (29)). In our notation, Longaretti’s Eq.
(29) yields a r, <1 criterion for accretion. This is a less
severe restriction than our r, = 0.691 criterion. Similarly,
the critical density for accretion given in our Eq. (32b) is
larger by about a factor of 3 than the critical density found
by Longaretti (his Eq. (30)). The differences in accretion
criteria between the two works is a result of our adopting
an energy-based approach, where both relative initial ki-
netic and potential energies are considered, and our as-
sumption that particles collide with random orientation.
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From his three-body capture criterion, Longaretti con-
cluded that aggregates appear to be a natural outcome of
ring particle coilistons, and that the fractional mass gain
during a collision can be of order unity. Qur results sup-
port this conclusion only for the very outer ring systems
(see Table I). Longaretti also investigated the coupling
of translational and rotational degrees of freedom during
collisions; these results, relevant to determination of
more accurate coefficients of restitution than we have
modeled here, are discussed in Section VI,

3. Salo {1992). Salo {1992) conducted numerical N-
body simulations of ring particle interactions, including
both gravitational interactions and dissipative collisions.
His simulations show that gravitational wakes which form
in Saturn’s outer rings are in some cases strong encugh
that trapped particles can form gravitationally bound, low-
density aggregates. Sale finds that for an initial distribu-
tion of particles with a density of solid ice (0.9 g/cm?),
spanning an order of magnitude in radius (50 cm < r <
3 m), aggregate bodies begin to form between 2.07 and
2.16R; in Saturn’s A ring. He does not find any accretion
in Saturn’s C ring or B ring. At 2.12Rg, Salo finds an
aggregate body which grows to a radius of 15 m, with a
density of 0.3 g/ecm?, at which point its accretional growth
stops.

Qualitatively, our estimates for accretional growth
match Salo’s numerical results well. Our model predicts
that gravitational accretion will not occur in Saturn’s C
ring and B ring and that accretion at the inner edge of the
A ring (2.02Rg)} will occur only for small mass ratios (from
Table I), consistent with Salo’s results.

Specifically, our model predicts that accretion at 2. 12R
should occur to a lesser extent than seen in Salo’s simula-
tions. With a particle density of 0.9 g/cm® at 2.12R, our
accretion model permits accretion only between bodies
whose mass ratio is less than 0.0013; Salo’s simulations
show aggregate formation between bodies whose mass
ratio is higher than this. We can directly compare Eq.
(31) to Salo’s finding that a 15-m object whose density is
0.3 g/cm? can no longer accumulate 50-cm particles. The
combination of the underdense 15-m aggregate and a 50-
cm particle of density 0.9 g/cm® would have a combined
scaled size of r, = 0.89 in Hill units. That this combination
does not result in accretion implies & r, =< (.89 criterion
for accretion, a less stringent criterion than our Eq. (31).

There are several possible explanations for the specific
differences between our model’s results and those of Salo.
While Salo’s N-body simulations allow for decreasing
densities as aggregates form with void spaces, our model
assumes a constant density for all bodies. Salo’s aggregate
particles can also deform during collisions, so that the
physical scaled radius of a composite particle can be
smaller than the value of 7, given by Eq. (21) and thus

347

can fill a smaller portion of its Hill sphere than we would
predict. This is particularly true when the composite body
is much larger than all of its constituent parts. Nonethe-
less, by assuming constant densities appropriate for solid
icefrock bodies, our model will still tend 1o overestimate
accretion, since accretion between strength-dominated
(r = 20 km) bodies will in general produce aggregate bod-
ies with densities less than that of solid bodies. Qur neglect
of the physical shapes and evolving densities of individual
bodies thus does not account for the greater extent of
accretion found by Salo.

We instead believe that the discrepancies between
Salo’s findings and our predictions are mainly a result of
our model’s treatment of each collision as a three-body
problem; gravitational interactions of orbiting particles
not involved in a collision are ignored in our capture
criteria. The formation of gravitational wakes in dense
rings is a collective phenomena which will alter the gravi-
tational potential felt by colliding bodies from that of the
simple three-body case, as the influence of nearby bodies
helps to offset the tidal influnence of the planet. In the case
of the outer A ring, gravitational instabilitics seem to
foster the buildup of low-density aggregates. Additionally,
by adopting a capture criterion based on average impact
orientations we have neglected some collisions which may
result in accretion for certain impact directions. In dense
rings, where particles experience both a large number of
impacts per orbit and collective gravitational effects such
as wake formation, the effects of impact orientation may
be significant, Coliective effects are unlikely to be im-
portant in low-optical-depth rings and moonlet belts.

B. Implications for Specific Questions of Ring and
Moon Origins

1. Lifetimes of small moons. Colwell and Esposito
(1992, hereafter CE92) calculated lifetimes for the small
moons of Uranus and Neptune listed in Table I as short
as 80 million years (for Cordelia). Assuming that the ob-
served moon population represents collisional fragments,
CE92 found that the evolution of the collisional cascade
requires both large satellites to act as initial parent bodies
{a 100-km-radius body is needed to act as a primordial
source for Cordelia and Ophelia) and that surprisingly
large numbers of 1- to 10-km bodies currently coexist with
the observed small moons (about 1000 1 km radius bodies
at the e ring). Although both of these somewhat difficult
conclusions could be tempered by the inclusion of accre-
tionary processes, this work indicates that for reasonable
particle density estimates, accretton is not possible at
the current orbital locations of Cordelia, Ophelia, Naiad,
Thalassa, and Despina. Low mass ratio accretion is possi-
bie for the other moons; for example, at its current orbital
position, Bianca could accrete a 3-km-radius body with
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a low relative impact velocity. However, such loosely
bound ‘“‘rubble-piles’ would surely have lower internal
strengths than those considered by CE92, and would
therefore have shorter lifetimes against disruption than
their solid counterparts. A combination of the assumption
of a constant impactor flux with time and the neglect of
orbital tidal evolution of moons may have led CE92 to
underestimate moon lifetimes. However, since CE92
found the smallest moons to have lifetimes less than about
250 million years, their estimates would have to be in
error by more than afactor of 10 to produce moon lifetimes
dating back to the era of planet formation, This seems
unlikely. In short, reaccretion alone cannot end the quan-
dary over the existence of the current populations of
small, and thus short-lifetime moons observed by Voy-
ager. In fact, when Cordelia, Ophelia, Naiad, Thalassa,
or Despina are eventually disrupted by a meteroid or
cometary impact, their fragments will not reaccumulate.
These moons are today’s ring precursors.

2. Neptune’'s inner satellites. Banfield and Murray
(1992) require that the current inner satellite system at
Neptune accreted after the circularization of Triton’s or-
bit. Their Fig. 2 models the tidal history of the current
satellites over the past 4 billion years, using a maximun
rate of tidal evolution based on Larissa’s formation at
corotation. Our work indicates that Naiad and Thalassa
could not have formed through accretion, even at their
estimated initial semimajor axes of 2.02Ry and 2.2Ry.
This work supports the Banficld and Murray suggestion
that these two moons may represent fragments from the
disruption of a larger object which formed at a more dis-
tant orbital location and experienced greater tidal orbital
evolution due to its greater mass. It appears very unlikely
that the rest of the debris produced from such a disruption
gravitationally accumulated onto Naiad or Thalassa; per-
haps some of it is currently resides in the ring arcs. Lim-
ited accretion is possible at the estimated initial positions
of Larissa, Galatea, and Despina, although the latter case
is very difficult for densities less than 1.4 g/cm?®.

3. G-Ring parent bodies. In arecent analysis of pho-
tometry of the G ring, Showalter and Cuzzi (1993) have
inferred the presence of a band of parent bodies, ranging
in size from 100 m to 1 km. It has been difficult to explain
how such bodies would not reaccrete, since the G ring is
located well outside the classical Roche limit. We find
that if the parent bodics have a density of solid ice, they
could not accrete in the G ring unless their radii differed
by more than about 50% and then only if rebound veloci-
ties are very low. Accretion of like-sized objects could
occur only for densities =1.5 g/cm®, which seems high
given that the known densities of Saturn’s inner moons
are in the 1.17-1.26 g/cm® range. It is plausible that a
small popuiation of parent bodies in a relatively narrow
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size range could coexist in the G ring without accumuiat-
ing, acting as a source and sink for the dusty ring material.

VI. CONCLUSIONS AND FUTURE WORK

The results presented here demonstrate the intriguing
and unusual character of accretionary processes in a tidal
environment. Additionally, they suggest that tidally modi-
fied accretion may play a sigpificant part in the origin and
evolution of coexisting ring/ringmoon systems. Our main
conclusions follow.

1. The type of accretion which occurs in the Roche zone
has a very different character than simple hierarchical
accretion. Small bodies accrete onto large bodies, while
like-sized objects are prevented from accreting with one
another due to the tidal influence of the planet. Table 1
lists the maximum mass ratio between colliding bodies
which can result in accretion at various ring and satellite
locations. Accretion between bodies who differ greatly in
mass is possible within the classical Roche limit, while
bodies close in mass are precluded from accreting in re-
gions exterior to the Roche limit.

2. Accretional growth of ice—rock bodies (0.9 < p =
1.5 glem?®) is extremely limited by tidal influences within
all ring systems. We find very limited accretional growth,
despite the fact that the major approximations inherent to
our formalism will lead to an overestimation of accretion.
These include the neglect of erosion and fragmentation,
the assumption of constant density, and the use of a fixed-
bin mass state vector.

3. “Runaway accretion’’ or complete reaccumulation
of disrupted bodies is not found to occur in the Roche
zone. We find that for a = (p/p,)"'"*3R,, where p is the
density of the accreting material and p, and R, are the
density and the radius of the planet, tidal effects on accere-
tion drastically reduce or eliminate significant growth of
the largest bodies in a swarm. As a consequence, we
conclude that cohesive ice or rock bodies can stably exist
at orbital radii far interior to regions where such bodies
can efficiently accumuiate from debris distributions.

4. Tidally modified accretion canlead to the formation of
bimodal populations, with one element composed of many
small, high-velocity particles and the other of a few large
objects on nearly circular orbits. Ring/ringmoon systems
may be the natural result of accretional evolution of a frag-
mentation-produced debris distribution in the Roche zone.
This is the first work to offer a quantitative explanation for
the origin of the bimodal character of ring/ringmoon sys-
tems, as well as an explanation for the stable coexistence
of large objects outside the classical Roche limit.

With a combination of relatively direct numerical and
analytic approaches we have been able to draw several
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interesting conclusions about accretion in the Roche zone.
Our preliminary model has included several significant
assumptions and approximations. The Markov accretion
model described here assumes a constant density for all
bodies, independent of their individual histories. In real-
ity, the density of agglomerate bodies will typically be
lower than that of their constituent bodies due to void
spaces, since the self-gravity of bodies less than about 20
km in radius is typically not strong enough to overcome
the internal strengths of the composite particles. For ac-
cretion between like-sized bodies, large void spaces wili
quickly result in underdense (p ~ 0.1 g/cm®) DEBs as
proposed by Weidenschilling et al. (1984). Because accre-
tion in a tidal environment occurs preferentially between
bodies which differ greatly in size, density should not
decrease as much during the course of accretion, since
smaller bodies are better able to fill in void spaces. How-
ever, some decrease in density will still occur as objects
accrete in the Roche zone. Altenatively, underdense ag-
gregates may experience an increase in density as they
deform while accreting smaller bodies. In general, the
neglect of density evolution by this work results in an
overestimation of the amount of accretion which can oc-
cur, since lower density objects are more likely to over-
flow their Hill sphere. When agglomerates of very low
density form in most rings, through physical sticking
mechanisms, spatiafly asymetric accretion, or accretion
of bodies close in size (for outer rings), they would be
only marginally (if at all) gravitationally bound, and would
likely be dispersed during future impacts. Some under-
dense agglomerates may form in dense rings due to collec-
tive gravitational effects (Salo 1992), as discussed in Sec-
tion V.A3. .

This model considers only gravitation-based accretion.
Physical sticking processes, caused by interparticle sur-
face forces, could be significant for small particles with
high surface-area-to-mass ratios. While physical or chemi-
cal bonds formed between micrometer-sized bodies may
lead to the formation of dust aggregates. recent experi-
ments do not find sticking between such aggregates, even
at low velocities (Blum and Miinch 1993). The overall
effect of sticking processes on macroscopic accretion
would seem to be small.

The capture criteria dervied in this work are based on
the assumption of random impact orientation. The specific
cxtent of the mass range left relatively unaffected by ac-
cretion {Eq. (35)) is dependent on the critical value of r,
needed for accretion, which we have derived using an
angle-averaged impact energy. Consideration of specific
impact orientations changes this critical r, value, which
in turn affects the nomber of mass “‘states” contained in
the high-mass end of the bimodal distributions shown in
Figs. 5a and 7. If the critical r, for accretion on average
is higher than the angle-averaged value (which could be
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FIG. 9 The mass evolution of a debris swarm at the Adams ring.
Same conditions as Fig. 5a, except here the critical value of r, required
for accretion has been raised to r, = 0.75, which has decreased the
number of *“absorbing states’” by one. Mass distributions 1-3 are shown
for £ = 0, 300, and 450 years.

the case if most impacts occur radially}, the high-mass
end will cover a smaller mass range at a given orbital
radius. Figure 9 shows the evolution of the swarm from
Fig. Sa with a critical value of r, = 0.75. For the case of
accretion at the Adams ring, the bimodality is preserved
for critical values of r; less than about 0.93; this value
would instead lead to the bimodality seen in Figs. 5a and
7 at more interior orbital locations. An average critical
value of r, needed for accretion which is close to unity
would imply that nearly all collisions occur radially and
that bodies in the swarm do not ““spin’’ significantly (since
this would tend to rotate a previously radially accreted
particle into a narrower dimension of the Hill sphere,
where it would be easily ejected upon subsequent im-
pacts). A higher average critical value for r, may also be
appropriate for high optical depth rings (r = 0.2) where
collective gravitational effects are significant (Salo 1994).

The cotlision rate formalism utilized here is appropriate
only for swarms consisting of a large number of bodies
with high random velocities. As velocities are collisionally
damped and accretion progresses, the PIAB approxima-
tion fails. In order to study accretion at relative velocities
lower than those discussed here, we will need to utilize
collision frequencies appropriate io low-velocity, shear-
dominated collisions. Expressions for the low-velocity
regime have been derived for the domain of planetary
accretion (see, e.g., Greenberg et al. 1991); however,
expressions valid in a highly tidal environment are still
required.

The coeefficient of restitution of a collision is crucial
in determining whether colliding bodies will eventually
become gravitationally bound. In our model, ¢ is treated
as a constant parameter. The extreme case of completely
inelastic collisions (Figs. 5 and 7) demonstrates the great-
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est extent of gravitational accretion possible, while the
case of completely elastic collisions results in no accretion
for all of the ring and satellite systems discussed here. In
reality, the coefficient of restitution is a function of both
impact velocity and of particle size. Experimental results
of Hatzes et al. (1988) indicate that ¢ tends to decrease
with increasing velocity. Analytic modeling by Dilley
(1993) and Blum and Miinch {1993) suggests that for a
given particle size, a collision with a like-sized body will
be more inelastic than one with a much larger body. How-
ever, the absolute size of the smaller body seems to play
an important role, as all mass-ratio collisions appear to
be more elastic as the size of the smaller body increases
{see Dilley 1993, Fig. 5). These trends all seem to decrease
the likelihood for accretion between large, low-velocity
objects, although more exact functional dependences of
e on velocity, size, and mass are needed to determine the
specific implications for accretion processes.

Determining exact amounts of energy damping during
collisions of orbiting bodies is yet still more complex.
While experimental work has focused on the determina-
tion of normal coefficients of restitution, &,, theoretical
modeling by Longaretti (1989) has examined both transla-
tional and rotational degrees of freedom during collisions.
His work indicates that coupling between these degrees
of freedom can result in rebound velocities which are
greater than zero even when coefficients of restitution are
equal to zero. If the effective coefficient of restitution as
defined in Eq. (27) is greater than about 0.5, due to either
elastic physical properties of rock/ice fragments or to
particle spin following collisions, the onset of accretion
between particles with p << o, will not begin until veloci-
ties have been significantly collisionally damped. In this
work, we have adopted a collision frequency scheme valid
when impact velocities are determined predominately by
random velocities. However, for very elastic collisions
accretion will occur as impact velocities are increasingly
determined by Keplerian shear, and collision rates valid
for shear-dominated collisions will be required. This is
demonstrated by the values of g, listed in Table I, which
represent the maximum values of e which can, on average,
result in accretion between objects in the PIAB regime.
As mentioned above, expressions for shear-regime rates
currently available are invalid in the Roche zone. One of
the important future directions of this work will be the
development of such rates and an analysis of accretion
processes near the Roche zone at low relative velocities.
This will be crucial in the modeling of both the final stages
of accretion in tidal environments, when velocities of the
largest bodies have been significantly damped due to colli-
sional damping, and to modeling accretion in swarms
where the effective coefficient of restitution during colli-
sions is higher than the £, values given in Table 1.

Our preliminary model has demonstrated that the ef-
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fects of tidal forces can significantly alter the course of
accretion in the Roche zone, Even as collisional velocities
are damped due to inelastic collisions, bodies with similar
masses cannot accrete with each other in the Roche zone
due to the influence of the tidal potential. In certain cases,
our simulations show that this leads to a bimodal popula-
tion, with one component consisting of smaller, meter-
sized objects and the other of a few tens of bodies of
hundreds of meters to kilometers in size. These large
bodies continue to sweep up small bodies and dust, but
are precluded from accreting with cach other by the tidal
potential. This bimodality is suggestive of one of the most
striking features of the Voyager results: the common co-
existence of dust, rings, and ringmoons around the giant
planets.

APPENDIX A

Derivation of Mass Transition Probabilities

The time rate of change of the total amount of mass contained in the
kth mass bin, M,, is given by

M,

uar—=(A+B+C)A(D+E+F). (AD)

where A, B, and C are integrals which represent mass gain to the kth
bin and D, E, and F are integrals which represent mass loss from the
kth bin. The gain integrals are

A=(™

W

dm” j " (A2)

| ”
dm E(mJ + ) A e A e
Mi—)

4

k=2
B= z Bf = 2[ J’:.JH dm" "’”’:k—m- dm,(m’ + m”)nm'nm"Am',m" (Aa)
= i

bt S
C= z Cj = E L’:’jﬂ dm” jm I dm’(m")nm'ﬂm~Am-,m-, (Ad)
i= ¥ *

where A represents mass gain to the kth bin due to collisions between
particles in the (k — 1)th bin, B represents gain due to collisions between
the (k — Ith bin and all smaller bins, and C represents mass gain to
the kth bin due to collisions between kth bin particles and all smaller
bin particles. The amount of mass transferred to the kth bin as a result
of a particular collision is in parentheses in each integral, n,,dm is the
differential mass distribution within a bin, and A,, ,» is the accretion
probability per time.
The loss integrals are given by

D= J’mnl dm" JM&H am’ l(m' + m”)nm’nm"d‘m' - (AS)
my, "y 2 "
E= z E:' = 2 J’ Faal dmu f k+1 dPﬂ'(m')ﬂm'nm'Am*'m" (Aé)
jekt1 O My

k=1 o o
F= 2 FJ = 2 J'mJH dm"! Hl_m” dml(mJ)nm'nm"Am"m"’ (A—'")

j=1 M M1

where ¥ is the total number of mass bins. Integrals I, E, and F describe
the loss of kth bin particles as they accrete with other particles to produce
larger objects. Integral D represents mass loss from the kth bin due to
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collisions between kth bin particles, E represents loss due to collisions
between kth bin particles and all larger bin particles, and F represents
mass loss from the kth bin due to collisions between Ath bin particles
and all smaller bins, Integrals (A2)-(A7) account for all possible sources
of mass gain to or mass loss from the kth bin in a purely accreting
system; these integrals apply only to mass bins spaced logarithmically
by a factor of 2 in mass.

The transition mateix element T, &) is the probability that a unit
mass will be transferred from bin i to bin & in time Ar. A little algebraic
manipulation is needed to derive the matrix elements from Eqs. (A2)-
(A7). Integrals A and C describe mass transfer rates to the 4th bin from
a single smaller bin {the (k — 1)th bin or the jth bin), while integrals D,
E, and F all describe rates of mass transfer from mass bin & to a single
larger mass bin (the (& + 1)th bin for D and F and the jth bin for E).
However, integral B describes the rate of mass transfer from two mass
bins—the (& — 1)}th and the jth bins—to the kth bin. For this reason,
integral B is divided into two parts when defining the transition matrix
elements;

B=B+8 {A8)

k=2
Bl = Z BlJ = E J—:‘H dam" L!:_mrA dm'(m")nrll'ﬁm'Am’.m" (A9)
J

=t
L= Mkl g
Bl:ZB“",-ZEI L " dm [ A g A . (AT0)

Both mass transfers are the result of particles in the jth and (k¢ — I)th
bins accreting together to form new particles large enough to enter the
kth mass bin. Here, B| is the rate of mass transfer to the 4th bin from
bin j, and B; i5 the rate of mass transfer to the kth bin from the (k —
I)th bin.

The transition matrix elements are therefore given by

[B);+ C-Ar ifi<(k—1)
{A+B2+Ck_l]'Al 1f1=(k71) ,

TR\ p+E+F A iti=k (A1D
0 ifi >k

where A thru F are given by Egs. (A2)-(A10), i and & range from 1 to
(Y — 1), and At is the size of the time step.

The transition matrix elements which describe mass transfer to the
final, discrete bin are given by

[BL,']'AI lfl<(Y_ 1)
TG, Y)={[A+B,-Afl ifi=(Y-1). (A12)
1 ifi=Y

Since T(Y, Y) = |, the final bin is an absorbing state. Note that the
integrals present in Eq. (A13) do not involve collisions with the final
Yth bin. This is because in a real system the final bin as defined in our
model is occupied only when all other bins are empty.

APPENDIX B

Velocity Evelution Due to Accretion

The evolution of the rms velocity of each mass bin is affected by two
basic processes: distant, gravitational interactions between bodies and
inelastic collisions. We have utilized the work of Stewart and Wetherill
(1988) to model how the rms veiocities of each mass bin evolve due
to gravitational stirring, inelastic rebounding collisions, and dynamical
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frictton with all other bins. Below we derive an analogous expression
for the rms velocity evolution due to accretion.

Consider the total change in kinetic energy the kth mass bin experi-
ences per unit time,

(BD)

where M, is the total amount of mass in the bin and (v*) is the mean
square random velocity of the bin. Ignoring mass evolution, dM/dt =
0, and we have

fric:|

where the terms on the right-hand side correspond respectively to veloc-
ity evolution due to gravitation stirring, inelastic rebounding, and dy-
namical friction as given by Stewart and Wetherill (1988).

The change in kinetic energy a mass bin experiences due only to
accretion is given by the kinetic energy of mass entering the bin minus
the kinetic energy of mass leaving the bin:

dhH d{v?)
dr * dt

stir reb

N [dm

dr dt (62)

2
AM: ) _ L[ M TG, k) (oln) — M1 — T(k, &) (vz)] . (B3)
dt dr =57

where T(i, k} and T(k, &) are mass transition probabilities defined in
Appendix A, {v1_} is the mean square velocity of the mass entering the
bin (given by the center of mass velogity of the accreting pair) and we
have assumed that mass leaving the kth bin has a square velocity given
by the mean value for the bin, (v*). The total change in kinetic energy
due to accretion can also be written in differential form:

d(M )
dt

4

My
dt

=M, dt

+ 4 (B4}

acc acc ace

Equating Egs. (B3) and (B4) and solving for (d{t"))/(dD)|,.. we find:

d (%
dr

_ Zmop MiTUL B ) — 0 Zicgu  MITUL )
B di X M, - B3

acc

Equation (B5) is of the same form as the Stewart and Wetherill (1988)
equations. It is comparable to Ohtsuki’s (1992) Eq. (2.11), except here
we have eliminated a term by assuming that mass which leaves a bin
has a square velocity given by the mean value for the bin.
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