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ABSTRACT

The spin-axis precession period of Jupiter is near that of a fundamental Laplace-Lagrange solar system mode
describing the precession of Uranus'’s orbit plarnd.B8 x 10° yr). As a result, a portion of the?B obliquity of
Jupiter may actually be forced by a spin-orbit secular resonance with Uranus. If this portion predominates, it
allows for a constraint on Jupiter's moment of inertia that is independent of interior models.

Subject headings. celestial mechanics — planets and satellites: individual (Jupiter) — solar system: general

1. INTRODUCTION plane so that the system precesses as a unit (Goldreich 1965).

. : The precessional constait, can be written
It is a remarkable occurrence in the solar system that the P o,

spin-axis precession periods of Jupited[74(\/0.25)x 10° yr] 3GM, (3, +q
and Saturn#£1.750/0.22) x 10° yr] are correspondingly very o == ? ( 2 ) , (1)
close to the precession periods of the orbit planes of Uranus 2 waj \N+1

(4.33x 10° yr) and Neptune (1.8% 1C° yr), whereX is the

normalized moment of inertia of the planet (Ward 1974; Harris (Ward 1975; French et al. 1993; WH), where= 1.7587x

& Ward 1982). Such near-commensurability can resultin strong 10™* s * is the spin frequency of Jupitea, = 5.2028 AU is
spin-orbit interactions, and indeed, Neptune perturbations mayits heliocentric distancel, is the quadrupole coefficient of its
be responsible for the large ZBobliquity of Saturn. Ward &  gravity field, and\ = C/M,R%. The quantityq = 33, (m/
Hamilton (2004, hereafter WH; see also Hamilton & Ward M.)(&/R)? is an effective quadrupole coefficient of the satellite
2004, hereafter HW) suggest that Saturn and Neptune currentlysystem, and = 3, m(GM,a)"%M,R’ is the angular momen-
occupy a secular spin-orbit resonance and propose that Saturfim of the satellite system normalizedhR’w, whereM, and
initially formed with a small obliquity but later acquired its ~Rare the mass and radius of Jupiter antl &} are the masses

current value by means of resonance capture as the Kuiper Bel@nd orbital radii of its satellites. Jupiter system data compiled
was dep'eted’ Neptune migrated, or both. by D. R. WI||Iam51 list A = 0.254 and]2 = 001469, as well

In this Letter, we concentrate on Jupiter, whose spin-axis @S satellite masses and orbital distances that we use to find

precession rate is suspiciously close to the precession rate ofl = 0.03033 andl = 0.00263. With these numbers, equa-
the principal Laplace-Lagrange mode controlling Uranus’s orbit ion (1) yieldse: = 20741 yr. . S
plane (Ward 1974; Harris & Ward 1982). Following the pro- _ Orbit plane—If the orbit plane of Jupiter were fixed in
cedure outlined in WH for locating the spin axis in a reference inertial space, the spin axis would precess uniformly with a
plane rotating with the mode’s frequency, one also finds that PeriodP = 2r/(«a cose) = 4.735x 10° yr, wheree = 3712 is

the longitude of Jupiter's north pole is nearly aligned with the the Jovian obliquity. However, the orbit plane of Jupiter is not
effective orbit normal of this mode (D. P. Hamilton 2004, flxed;_ all of the planetary orbits have small inclinations to the
private communication). This may indicate that a significant invariable plane of the solar system and undergo nonuniform
portion of Jupiter’s spin-axis motion is being forced by Uranian regression of their orbital nodes due to their mutual gravita-
perturbations. If so, this would have important implications for tional perturbations. The orbital inclinationand ascending
Jupiter’s moment of inerti&C. Typically, a value oCis derived =~ Node( of a given planet are then found from a superposition
from Jupiter'sJ, and is then dependent on the adopted plan-

-interi i b I .
etary-interior model. Thus, an independent valueGarould sin- sinQ = E _zjsm @t+3),

render the measured, more diagnostic of other aspects of 2 ;

interior structure, including a possible Jovian core, whose pres-

ence has key implications for Jupiter’s origin (W. B. Hubbard sinl— cosQ = E ] cos @t + 5,) 2
2005, private communication). Here we offer such an estimate 2 72 ' !

based solely on the spin dynamics of the planet and its poten-

tially strong interactions with Uranus. (e.g., Brouwer & van Woerkom 1950; Bretagnon 1974; Ap-

plegate et al. 1986, hereafter A86), comprising many terms of

amplitudes {} and frequencies ¢}. A86 provide the ampli-

tudes, frequencies, and phase constants of 20 such terms for
Spin axis.—The equation of motion for a planet’s unit spin- Jupiter as found from their numerical integrations. The largest

axis vector,s, is d/dt = «(s- n)(sx n), wheren is the unit amplitude terms (i.ej = 3, 6, and 14 when ordered by in-

vector normal to the planet’s orbit plane. The precession ratecreasing frequency) represent contributions from three of the

o depends on the strength of the solar torque exerted on theeight fundamental inclination modes of the Laplace-Lagrange

planet and its spin angular momentum. For Jupiter, most of secular evolution of the solar system. The first of these

the torque is actually exerted on the Galilean satellites instead(l, = 020659,g, = —07692 yr?, 6, = 235203) is due to the

of directly on the planet (Ward 1975), although Jupiter’s large

quadrupole gravity field locks the satellites to its equatorial * See http://nssdc.gsfc.nasa.gov/planetary/factsheet/jupiterfact.html.
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2xl|g;| = 1.87 x 10° yr nodal regression of Neptune and the altered much for small changes én In contrast, because of
second iy = 0°0548,g, = —27995yr*, §, = 14(¢2203) to that its small denominator, the leading time-constant term is very

of Uranus (Z/|gs| = 4.33x 10° yr), while the last [, = sensitive toe and diverges a& + g;— O.
0362, g,, = —26!332 yr?, §,, = 307%357) is due to the Divergence occurs because the problem has been linearized.
27/| 9. = 4.92x 10 yr mutual orbital precession of Jupiter This singularity can be removed by replacing the lead term
and Saturn. with a nonlinear guiding center obtained from Cassini state
theory (e.g., Colombo 1966; Peale 1969, 1974; Ward et al.
3. SPIN-AXIS MOTION 1979). It turns out that the high-frequency terms do not interfere

. . ) _— much with the motion of this guiding center (e.g., Ward 1992;
A nonuniform precession of the orbit leads to oscillations HW), which is quite similar to a spin-axis motion in the case
of the planet's obliquity as the spin axis attempts to respond ot niform orbital precession (i.e., a single orbital term) with

to the moving orbit norman(t). In component form, the spin- | — | andQ = g,. In this case, Cassini states are positions for
axis motion can be writters, = a(s-n)(§n, —sn), § = which the guiding center can coprecess with the 6 term

—a(s-n)(sh, —sn), and s, = «(s-N)(sn, — §n), Where  nq annear stationary in the rotating frame. They all lie on the
{s, n} denote the components of the unit vectors with respect , _ayis of the rotating frame at angular distandesgiven by
to the invariable plane of the solar system. To first-order ac- ¢, tions ofx cos 6.+ 1) sin @ + 1)) + g Sinf. = 0, which

curacy in small angles, we can setn~n,~s,~1, 0 re-  paq ejther two or four solutions, depending on the ratig,.
duce the first two equations tg = afs, —n,) and §, = One of these (Cassini state 3) is near’1@6trograde) and will
—a(s, — n,) while dropping the third. Differentiating the sec- 1 concern us here, while state 4 lies on a separatrix and is
ond equation and using the first to elimingjethen leads 1o ystape States 1 and 2 are both stable. State 2 always exists
d°s/dt* + a’s, = a(an, +n), which is the equation for @  ,nq jies on the positive-axis, while state 1 does not exist for
forced harmonic oscillator. This has both a homogeneous S°'|a/ge| < (i1, + cog?1,)*? = 1.0146 (WH), which corre-

lution, s, = 6, oS (-t + ), S, = 0,Sin (—at + §) with sponds tax < 3.039 anc\ > 0.2289: the regime of interest here.
constants), ands to be determined from observations, and a gjnce state 1 positions would also be nearly antialigned in
particular solution azimuth with the observed spin axis (on the negataxis),
they will not considered further. Assuming the forced pole is
s = E al, cos(gt s — E) near state 2, we pick an anglg, solve for the associates
P T at g ! o2l (and therefore\ through eq. [1]), and then use it to evaluate
the remainder of equation (4) to deduce the forced-pole be-
5, = E al; sin(gjt +6 — E) ’ 3) havior as a function pfx.“ Figurg B displays t_he Jovian orbit
7 atg 2 normal and generalized Cassini state positions for the next
1P yr for two values,A = 0.254 and\ = 0.2365. Figure &
where we have set silyf2) = |;/2 and identifiech, = 3 |, cos shows the current (= 0) loci of the forced pole as the assumed
(gt + 6, — «/2) and n, = 3 I;sin (gt + 6, — 7/2), recalling A of Jupiter is varied. These all lie at a near-constant distance,
that the orbit normal lags the ascending node b¥. 80 the §,p =~ 0207, below thex-axis due to the nonresonant terms.
limit that o > {|g; [}, S, = n, ands,,—~ n,, which is the well-
known result that a rapidly precessing planet “follows” its orbit
normal. 4. POLE POSITION
The amplituded, represents the free part of the spin-axis
motion. In the absence of a free component, equation (3) gives Next we locate the actual Jovian north pole in our rotating
the forced position of the spin axis due to the motion of the frame. The right ascension and declinatiors@fith respect to
orbit plane. For small angles, the tilt of the spin axis to the Earth’s equator and equinox at epoch J2000.0 aré0%%&nd
invariable-plane normal i8 = (s + §7)*%, whereas the oblig-  64°49, respectively (Cox 2000), and are given as the first entry
uity is e = [(s, — n)* + (s, — n)J*> in Table 1 as polar coordinates after replacing declination with
For Jupiter, the closeness of its spin-axis precessionorate colatitude. Rotating about the vernal equinox by Earth’s oblig-
to the Uranus orbit precession ratg, and the relatively large  uity, 23439 (Yoder 1995), gives with respect to the ecliptic
value ofl, make the amplitude of the= 6 term’s contribution and equinox. The normd to the invariable plane at J2000.0
to the spin-axis motion greatly enhanced. This suggests weis also given in this system by Cox (2000). Because the angles
view the motion of both the Jovian spin axis and orbit normal are so small, we can translate to the invariable plane by simply
from a frame rotating with that frequency (WHJThe particular subtracting thex-y components ok from s. The effective pole

solution in this frame now reads positionng of thej = 6 term is also listed (which is 18@rom
the Uranus orbit normal; A86). A counterclockwise rotation of
, alg z al; the coordinate system by — 502203 then put$, on the new
S0 = T oo Aat g °%° (6 — gt + &1l negativex-axis. In this system, the spin axis is tilted By=

32454 and only¢, = —2°974 below the positivec-axis. Its

S al; . Wi+ 4 location is indicated in Figureld The orbit normal is domi-
So T g sin[(g — gt + ¢, (4) nated by thg = 14 term due to Saturn and is included in the
where the new phasﬁ; — 51 — 6, — . The time-varying part ® The numbering and sign convention follow that of Peale (1974), except

that we measuré. with respect to the normal of the invariable plane instead
of the effective normal of th¢ = 6 term.
4 This can be considered a generalization of the Cassini state to nonuniform
2To do this, we subtract a phasgy(+ 6; ~ /2) + 7 from the argument orbit precession (e.g., Ward & de Campli 1979), and a similar procedure has
of each term, with thet= term placing thg = 6 contribution on the new been used recently by Bills (2005) to examine the obliquities of the Galilean
positive x-axis. satellites and by Peale (2005) in the case of Mercury.

of equation (4) is dominated by the= 14 term and is not
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Fic. 1.—(@) Trajectories of the orbit normablack) and the forced pols,
(particular solution) for the next million years shown in a coordinate system
rotating with a frequencg, = —27995 yr*. Forced poles are shown for two
moments of inertiaA = 0.254 plue) and\ = 0.2365 (ed). The fine structure
comes from thg # 6 terms, most notably the= 3 (Neptune) and th¢ =
14 (Saturn). If) The nearly straight-line loci (lying ~ —0°07 below the pos-
itive x-axis) of the current forced pole for various valuesNfThe present
locations of Jupiter’s spin axis orbit normaln, and effective normal of the
Uranus perturbation of the Jovian orhit,, are shown. The amplitudg and
phaseé’ of the free (homogeneous) solution are found by running a vector
from any forced-pole position to the spin axis.

figure, so that the distance betwegand the orbit normah
is the current = 312 obliquity of Jupiter.

5. MOMENT OF INERTIA

Since the current spin-axis position could be a combination
of forced and free motions, we cannot make a unique fit for
6., &', and«, whered' is now the phase of the homogeneous
solution in the rotating frame. Starting at any point along the
line of possible generalized Cassini statgs, (s, ,), the am-
plitude and phase of the free contribution are given by the
vector connecting that point with the observed palgq) as
shown in Figure b, so that

L)+ (8~ )70

0n = (s, —
ine' = (S, —S,,)/6,.

s ®)
Since the pole does not lie directly on the forced motion curve,
Jupiter’s free obliquity cannot be zero. Its minimum value
Omin = |S, — S, | = 0711 occurs whers, = 37454 cos 22974)

~ s, ,, for which A = 0.2355 andx ~ 2796 yr.

In Figure 2, we show the time evolution of the spin axis for
the two values ol used in Figure &, extending the integra-
tion to t ~ 2n/|a(N = 0.2365)— gs| ~ 24 Myr to see the full
range of motion. The further the forced solution is from the
spin axis, the less likely it is that we should at any given time
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TABLE 1
COORDINATES OF JUPITER SPIN AXIS IN ROTATING FRAME
Reference Colatitude Longitude
Framei Vector (deg) (deg)
Equator/equinox 1..... s 25,51 268.05
Ecliptic/equinox 2...... k 1.579 17.583
S 2.223 247.78
Invariable plane 3 ...... ng 0.0548 50.203
S 3.4544 227.23
Rotating system 4..... Ng 0.0548 180.00
S 3.4544 357.03

6. DISCUSSION

We have argued, on the basis of a near-alignment of Jupiter’s
north pole azimuth with that of Uranus’s orbit normal on the
invariable plane, that a significant portion of Jupiterd 3
obliquity may be caused by perturbations from Uranus. If so,
Jupiter's normalized moment of inertia, = C/M,R?, would
be several percent smaller than previous estimates, perhaps
closer to 0.236. This is still within the theoretical envelope of
possible values compatible with the measured valuk @iub-
bard 2005), although its additional compatibility withshould
also be examined (Guillot & Hueso 2005).

On the other hand, coincidences do happen, and one cannot
categorically rule out an accidental alignment. A measurement
of the precession constamtwould determine\ through equa-

® Theoretical values of range from~0.255 for the extreme of a constant-
density core and massless envelope- @221 for a constant-density envelope
and point-mass core (Hubbard 2005).

Degrees

Degrees

Fic. 2.—A 24 Myr trace of the spin-axis trajectorg, for the two values
of N\ used in Fig. 1. If the forced pole is relatively far from the curre(e.g.,
blue trajectory), a large portion of the spin-axis motion must be due to a free
componen®,, and the spin axis spends most of its time well away from the

find the spin axis so near the generalized Cassini state linex-axis. If the forced pole is near the currente.g.,red trajectory), thené, is

The probability is of ordeP = |§'|/18C to find the spin axis
*+|s, — §,,| from that line and to the right of the forced pole.
This rises to above 10% only for a free-obliquity amplitude
6, < 0°35. In Figure 3, we plot, 6, 6,, andP as functions
of \.

small and the spin axis never travels far from faaxis in this rotating frame.
Over the time interval of the plot, the homogeneous solution executes one
cycle on the red curve but five cycles on the blue curve, where the prominent
sculpting is due to Neptune perturbations. On a probability basis, the closeness
of the spin axis to the forced-pole line (Figo)implies a predominantly forced
Jovian obliquity.
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s . 05 accuracy would be needed to test whether the Jovian obliquity
\ ' is primarily a forced response to Uranus.
\\ Our estimates fok depend onl, andw, as well as on the

4l \ 104 frequency and phase constant of jhe 6 term and the Jovian

pole position. Uncertainties in the rotational profile of the planet
could also affect the estimate. Including the eccentricity of
Jupiter’s orbit only alters its spin-axis precession rate by a factor
(1— &) ¥~ 1.003. The planetary model of Bretagnon (1974)
lists a phase constant for the Uranus term of?286 resulting
in a pole¢, = 0°936 above the-axis, but this does not sig-
nificantly alter the probabilities. In the original treatment of
solar system secular variations, Brouwer & van Woerkom
(1950) obtained a value gf = —27903 yr*, which for a given
Cassini state distanag. would imply a larger\ by ~0.004.
However, the more recent value of Bretagnon (194)=
—2199984 yr*, is very close to the A86 result we have used.
Finally, a smaller free component than the preséh2 ®blig-
uity implies that either Jupiter formed with a spin axis nearly
perpendicular to its orbit plane or some as yet unknown damp-
ing mechanism has decayed the free obliquity. Damping could
also affect the Cassini state position (Ward & de Campli 1979),
tion (1). In lieu of this, we have used the Cassini state angle but as it is likely that Saturn currently librates about its forced-
as a proxy fora, but an ambiguity remains as to what portion pole position with an amplitude 6f31° (WH; HW), this seems
of the Jovian obliquity is free versus forced. Direct measure- to generally argue against such a damping mechanism.
ment of the motion of the pole would allow a determination

©
w

Probability

0.2

0.1

Fic. 3.—Spin-axis precession ratg thej = 6 Cassini state distandg,
the free-component amplitudg (Ieft scale), and the probabilityP (right scale)
as functions of the assumed moment of inertia constant for Jupiter,

of \ througha = S/(s- n)(s X n) = 2|As|/(At sin %), where
As is the position change over time intervAt. The Juno
mission, planned for 2011, will add a number of data points
for the Jupiter pole position over a time interval~af yr, but
the ultimate precision will depend on the length of the mission
(W. Hubbard 2005, private communication). At least two-figure
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