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ABSTRACT

The spin-axis precession period of Jupiter is near that of a fundamental Laplace-Lagrange solar system mode
describing the precession of Uranus’s orbit plane (∼4.3#105 yr). As a result, a portion of the 3�.1 obliquity of
Jupiter may actually be forced by a spin-orbit secular resonance with Uranus. If this portion predominates, it
allows for a constraint on Jupiter’s moment of inertia that is independent of interior models.

Subject headings: celestial mechanics — planets and satellites: individual (Jupiter) — solar system: general

1. INTRODUCTION

It is a remarkable occurrence in the solar system that the
spin-axis precession periods of Jupiter [≈4.74(l/0.25)#105 yr]
and Saturn [≈1.75(l/0.22)#106 yr] are correspondingly very
close to the precession periods of the orbit planes of Uranus
(4.33#105 yr) and Neptune (1.87#106 yr), wherel is the
normalized moment of inertia of the planet (Ward 1974; Harris
& Ward 1982). Such near-commensurability can result in strong
spin-orbit interactions, and indeed, Neptune perturbations may
be responsible for the large 26�.7 obliquity of Saturn. Ward &
Hamilton (2004, hereafter WH; see also Hamilton & Ward
2004, hereafter HW) suggest that Saturn and Neptune currently
occupy a secular spin-orbit resonance and propose that Saturn
initially formed with a small obliquity but later acquired its
current value by means of resonance capture as the Kuiper Belt
was depleted, Neptune migrated, or both.

In this Letter, we concentrate on Jupiter, whose spin-axis
precession rate is suspiciously close to the precession rate of
the principal Laplace-Lagrange mode controlling Uranus’s orbit
plane (Ward 1974; Harris & Ward 1982). Following the pro-
cedure outlined in WH for locating the spin axis in a reference
plane rotating with the mode’s frequency, one also finds that
the longitude of Jupiter’s north pole is nearly aligned with the
effective orbit normal of this mode (D. P. Hamilton 2004,
private communication). This may indicate that a significant
portion of Jupiter’s spin-axis motion is being forced by Uranian
perturbations. If so, this would have important implications for
Jupiter’s moment of inertia,C. Typically, a value ofC is derived
from Jupiter’sJ2 and is then dependent on the adopted plan-
etary-interior model. Thus, an independent value forC would
render the measuredJ2 more diagnostic of other aspects of
interior structure, including a possible Jovian core, whose pres-
ence has key implications for Jupiter’s origin (W. B. Hubbard
2005, private communication). Here we offer such an estimate
based solely on the spin dynamics of the planet and its poten-
tially strong interactions with Uranus.

2. PRECESSIONAL EQUATIONS

Spin axis.—The equation of motion for a planet’s unit spin-
axis vector,s, is ds/dt p a(s · n)(s � n), wheren is the unit
vector normal to the planet’s orbit plane. The precession rate
a depends on the strength of the solar torque exerted on the
planet and its spin angular momentum. For Jupiter, most of
the torque is actually exerted on the Galilean satellites instead
of directly on the planet (Ward 1975), although Jupiter’s large
quadrupole gravity field locks the satellites to its equatorial

plane so that the system precesses as a unit (Goldreich 1965).
The precessional constant,a, can be written

3 GM J � q, 2
a p , (1)( )32 l � lqaJ

(Ward 1975; French et al. 1993; WH), whereq p 1.7587#
10�4 s�1 is the spin frequency of Jupiter,aJ p 5.2028 AU is
its heliocentric distance,J2 is the quadrupole coefficient of its
gravity field, andl { C/MJR

2. The quantityq { j (mj/
1 �2

MJ)(aj/R)2 is an effective quadrupole coefficient of the satellite
system, andl { j mj(GMJaj)

1/2/MJR
2q is the angular momen-�

tum of the satellite system normalized toMJR
2q, whereMJ and

R are the mass and radius of Jupiter and {mj, aj} are the masses
and orbital radii of its satellites. Jupiter system data compiled
by D. R. Williams1 list l p 0.254 andJ2 p 0.01469, as well
as satellite masses and orbital distances that we use to find
q p 0.03033 andl p 0.00263. With these numbers, equa-
tion (1) yieldsa p 2�.741 yr�1.

Orbit plane.—If the orbit plane of Jupiter were fixed in
inertial space, the spin axis would precess uniformly with a
periodP p 2p/(a cose) p 4.735#105 yr, wheree p 3�.12 is
the Jovian obliquity. However, the orbit plane of Jupiter is not
fixed; all of the planetary orbits have small inclinations to the
invariable plane of the solar system and undergo nonuniform
regression of their orbital nodes due to their mutual gravita-
tional perturbations. The orbital inclinationI and ascending
nodeQ of a given planet are then found from a superposition

I Ijsin sinQ p sin (g t � d ),� j j2 2j

I Ijsin cosQ p cos (g t � d ) (2)� j j2 2j

(e.g., Brouwer & van Woerkom 1950; Bretagnon 1974; Ap-
plegate et al. 1986, hereafter A86), comprising many terms of
amplitudes {Ij} and frequencies {gj}. A86 provide the ampli-
tudes, frequencies, and phase constants of 20 such terms for
Jupiter as found from their numerical integrations. The largest
amplitude terms (i.e.,j p 3, 6, and 14 when ordered by in-
creasing frequency) represent contributions from three of the
eight fundamental inclination modes of the Laplace-Lagrange
secular evolution of the solar system. The first of these
(I3 p 0�.0659,g3 p �0�.692 yr�1, d3 p 235�.203) is due to the

1 See http://nssdc.gsfc.nasa.gov/planetary/factsheet/jupiterfact.html.
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2p/Fg3F p 1.87#106 yr nodal regression of Neptune and the
second (I6 p 0�.0548,g6 p �2�.995 yr�1, d6 p 140�.203) to that
of Uranus (2p/Fg6F p 4.33#105 yr), while the last (I14 p
0�.362, g14 p �26�.332 yr�1, d14 p 307�.357) is due to the
2p/Fg14F p 4.92#104 yr mutual orbital precession of Jupiter
and Saturn.

3. SPIN-AXIS MOTION

A nonuniform precession of the orbit leads to oscillations
of the planet’s obliquity as the spin axis attempts to respond
to the moving orbit normaln(t). In component form, the spin-
axis motion can be written x p a(s · n)(synz � szny), y p˙ ˙s s
�a(s · n)(sxnz � sznx), and z p a(s · n)(sxny � synx), whereṡ
{ si, ni} denote the components of the unit vectors with respect
to the invariable plane of the solar system. To first-order ac-
curacy in small angles, we can sets · n ≈ nz ≈ sz ≈ 1, to re-
duce the first two equations tox p a(sy � ny) and y p˙ ˙s s
�a(sx � nx) while dropping the third. Differentiating the sec-
ond equation and using the first to eliminatex then leads toṡ
d2sy /dt2 � a2sy p a(any � x), which is the equation for aṅ
forced harmonic oscillator. This has both a homogeneous so-
lution, sx,h p vh cos (�at � d), sy,h p vh sin (�at � d) with
constantsvh andd to be determined from observations, and a
particular solution

aI pj
s p cos g t � d � ,�x,p j j( )a � g 2j j

aI pj
s p sin g t � d � , (3)�y,p j j( )a � g 2j j

where we have set sin (Ij /2) ≈ Ij /2 and identifiednx p j Ij cos�
(gjt � dj � p/2) and ny p j Ij sin (gjt � dj � p/2), recalling�
that the orbit normal lags the ascending node by 90�. In the
limit that a k {FgjF}, sx,p r nx andsy,p r ny, which is the well-
known result that a rapidly precessing planet “follows” its orbit
normal.

The amplitudevh represents the free part of the spin-axis
motion. In the absence of a free component, equation (3) gives
the forced position of the spin axis due to the motion of the
orbit plane. For small angles, the tilt of the spin axis to the
invariable-plane normal isv ≈ (s � s )1/2, whereas the obliq-2 2

x y

uity is e ≈ [(sx � nx)
2 � (sy � ny)

2]1/2.
For Jupiter, the closeness of its spin-axis precession ratea

to the Uranus orbit precession rate�g6 and the relatively large
value ofI6 make the amplitude of thej p 6 term’s contribution
to the spin-axis motion greatly enhanced. This suggests we
view the motion of both the Jovian spin axis and orbit normal
from a frame rotating with that frequency (WH).2 The particular
solution in this frame now reads

aI aIj6′s p � � cos [(g � g )t � f ] ,�x,p j 6 ja � g a � gj(66 j

aIj′s p sin [(g � g )t � f ] , (4)�y,p j 6 ja � gj(6 j

where the new phasefj p dj � d6 � p. The time-varying part
of equation (4) is dominated by thej p 14 term and is not

2 To do this, we subtract a phase (g6t � d6 ∼ p/2) � p from the argument
of each term, with the�p term placing thej p 6 contribution on the new
positivex-axis.

altered much for small changes ina. In contrast, because of
its small denominator, the leading time-constant term is very
sensitive toa and diverges asa � g6 r 0.

Divergence occurs because the problem has been linearized.
This singularity can be removed by replacing the lead term
with a nonlinear guiding center obtained from Cassini state
theory (e.g., Colombo 1966; Peale 1969, 1974; Ward et al.
1979). It turns out that the high-frequency terms do not interfere
much with the motion of this guiding center (e.g., Ward 1992;
HW), which is quite similar to a spin-axis motion in the case
of uniform orbital precession (i.e., a single orbital term) with
I p I6 and p g6. In this case, Cassini states are positions forQ̇
which the guiding center can coprecess with thej p 6 term
and appear stationary in the rotating frame. They all lie on the
x-axis of the rotating frame at angular distancesvC given by
solutions ofa cos (vC � I6) sin (vC � I6) � g6 sin vC p 0, which
has either two or four solutions, depending on the ratioa/g6.
One of these (Cassini state 3) is near 180� (retrograde) and will
not concern us here, while state 4 lies on a separatrix and is
unstable.3 States 1 and 2 are both stable. State 2 always exists
and lies on the positivex-axis, while state 1 does not exist for
Fa/g6F ! (sin2/3 I6 � cos2/3 I6)

3/2 p 1.0146 (WH), which corre-
sponds toa ! 3.039 andl 1 0.2289: the regime of interest here.
Since state 1 positions would also be nearly antialigned in
azimuth with the observed spin axis (on the negativex-axis),
they will not considered further. Assuming the forced pole is
near state 2, we pick an anglevC, solve for the associateda
(and thereforel through eq. [1]), and then use it to evaluate
the remainder of equation (4) to deduce the forced-pole be-
havior as a function ofl.4 Figure 1a displays the Jovian orbit
normal and generalized Cassini state positions for the next
106 yr for two values,l p 0.254 andl p 0.2365. Figure 1b
shows the current (t p 0) loci of the forced pole as the assumed
l of Jupiter is varied. These all lie at a near-constant distance,
s ≈ 0�.07, below thex-axis due to the nonresonant terms.′

y,p

4. POLE POSITION

Next we locate the actual Jovian north pole in our rotating
frame. The right ascension and declination ofs with respect to
Earth’s equator and equinox at epoch J2000.0 are 268�.05 and
64�.49, respectively (Cox 2000), and are given as the first entry
in Table 1 as polar coordinates after replacing declination with
colatitude. Rotating about the vernal equinox by Earth’s obliq-
uity, 23�.439 (Yoder 1995), givess with respect to the ecliptic
and equinox. The normalk to the invariable plane at J2000.0
is also given in this system by Cox (2000). Because the angles
are so small, we can translate to the invariable plane by simply
subtracting thex-y components ofk from s. The effective pole
positionn6 of the j p 6 term is also listed (which is 180� from
the Uranus orbit normal; A86). A counterclockwise rotation of
the coordinate system byp � 50�.203 then putsn6 on the new
negativex-axis. In this system, the spin axis is tilted byv p
3�.454 and onlyfs p �2�.974 below the positivex-axis. Its
location is indicated in Figure 1b. The orbit normal is domi-
nated by thej p 14 term due to Saturn and is included in the

3 The numbering and sign convention follow that of Peale (1974), except
that we measurevC with respect to the normal of the invariable plane instead
of the effective normal of thej p 6 term.

4 This can be considered a generalization of the Cassini state to nonuniform
orbit precession (e.g., Ward & de Campli 1979), and a similar procedure has
been used recently by Bills (2005) to examine the obliquities of the Galilean
satellites and by Peale (2005) in the case of Mercury.
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Fig. 1.—(a) Trajectories of the orbit normal (black) and the forced polesp

(particular solution) for the next million years shown in a coordinate system
rotating with a frequencyg6 p �2�.995 yr�1. Forced poles are shown for two
moments of inertia:l p 0.254 (blue) andl p 0.2365 (red). The fine structure
comes from thej ( 6 terms, most notably thej p 3 (Neptune) and thej p
14 (Saturn). (b) The nearly straight-line loci (lyingy ≈ �0�.07 below the pos-
itive x-axis) of the current forced pole for various values ofl. The present
locations of Jupiter’s spin axiss, orbit normaln, and effective normal of the
Uranus perturbation of the Jovian orbit,n6, are shown. The amplitudevh and
phased′ of the free (homogeneous) solution are found by running a vector
from any forced-pole position to the spin axis.

TABLE 1
Coordinates of Jupiter Spin Axis in Rotating Frame

Reference
Framei Vector

Colatitude
(deg)

Longitude
(deg)

Equator/equinox 1. . . . . . s 25.51 268.05
Ecliptic/equinox 2. . . . . . k 1.579 17.583

s 2.223 247.78
Invariable plane 3 . . . . . . n6 0.0548 50.203

s 3.4544 227.23
Rotating system 4. . . . . . n6 0.0548 180.00

s 3.4544 357.03

Fig. 2.—A 24 Myr trace of the spin-axis trajectory,s, for the two values
of l used in Fig. 1. If the forced pole is relatively far from the currents (e.g.,
blue trajectory), a large portion of the spin-axis motion must be due to a free
componentvh, and the spin axis spends most of its time well away from the
x-axis. If the forced pole is near the currents (e.g.,red trajectory), thenvh is
small and the spin axis never travels far from thex-axis in this rotating frame.
Over the time interval of the plot, the homogeneous solution executes one
cycle on the red curve but five cycles on the blue curve, where the prominent
sculpting is due to Neptune perturbations. On a probability basis, the closeness
of the spin axis to the forced-pole line (Fig. 1b) implies a predominantly forced
Jovian obliquity.

figure, so that the distance betweens and the orbit normaln
is the currente p 3�.12 obliquity of Jupiter.

5. MOMENT OF INERTIA

Since the current spin-axis position could be a combination
of forced and free motions, we cannot make a unique fit for
vh, d′, anda, whered′ is now the phase of the homogeneous
solution in the rotating frame. Starting at any point along the
line of possible generalized Cassini states (s , s ), the am-′ ′

x,p y,p

plitude and phase of the free contribution are given by the
vector connecting that point with the observed pole (s , s ) as′ ′

x y

shown in Figure 1b, so that

′ ′ 2 ′ ′ 2 1/2v p [(s � s ) � (s � s ) ] ,h x x,p y y,p

′ ′ ′sind p (s � s )/v . (5)y y,p h

Since the pole does not lie directly on the forced motion curve,
Jupiter’s free obliquity cannot be zero. Its minimum value
vmin ≈ Fs � s F ≈ 0�.11 occurs whens p 3�.454 cos (�2�.974)′ ′ ′

y y,p x

≈ s , for which l ≈ 0.2355 anda ≈ 2�.96 yr�1.′
x,p

In Figure 2, we show the time evolution of the spin axis for
the two values ofl used in Figure 1a, extending the integra-
tion to t ∼ 2p/Fa(l p 0.2365)� g6F ∼ 24 Myr to see the full
range of motion. The further the forced solution is from the
spin axis, the less likely it is that we should at any given time
find the spin axis so near the generalized Cassini state line.
The probability is of orderP ≈ Fd′F/180� to find the spin axis
�Fs � s F from that line and to the right of the forced pole.′ ′

y y,p

This rises to above 10% only for a free-obliquity amplitude
vh ! 0�.35. In Figure 3, we plota, vC, vh, and P as functions
of l.

6. DISCUSSION

We have argued, on the basis of a near-alignment of Jupiter’s
north pole azimuth with that of Uranus’s orbit normal on the
invariable plane, that a significant portion of Jupiter’s 3�.12
obliquity may be caused by perturbations from Uranus. If so,
Jupiter’s normalized moment of inertia,l p C/MJR

2, would
be several percent smaller than previous estimates, perhaps
closer to 0.236. This is still within the theoretical envelope of
possible values compatible with the measured value ofJ2 (Hub-
bard 2005), although its additional compatibility withJ4 should
also be examined (Guillot & Hueso 2005).5

On the other hand, coincidences do happen, and one cannot
categorically rule out an accidental alignment. A measurement
of the precession constanta would determinel through equa-

5 Theoretical values ofC range from∼0.255 for the extreme of a constant-
density core and massless envelope to∼0.221 for a constant-density envelope
and point-mass core (Hubbard 2005).
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Fig. 3.—Spin-axis precession ratea, the j p 6 Cassini state distancevC,
the free-component amplitudevh (left scale), and the probabilityP (right scale)
as functions of the assumed moment of inertia constant for Jupiter,l.

tion (1). In lieu of this, we have used the Cassini state angle
as a proxy fora, but an ambiguity remains as to what portion
of the Jovian obliquity is free versus forced. Direct measure-
ment of the motion of the pole would allow a determination
of l througha p /(s · n)(s � n) p 2FDsF/(Dt sin 2e), whereṡ
Ds is the position change over time intervalDt. The Juno
mission, planned for 2011, will add a number of data points
for the Jupiter pole position over a time interval of∼1 yr, but
the ultimate precision will depend on the length of the mission
(W. Hubbard 2005, private communication). At least two-figure

accuracy would be needed to test whether the Jovian obliquity
is primarily a forced response to Uranus.

Our estimates forl depend onJ2 andq, as well as on the
frequency and phase constant of thej p 6 term and the Jovian
pole position. Uncertainties in the rotational profile of the planet
could also affect the estimate. Including the eccentricity of
Jupiter’s orbit only alters its spin-axis precession rate by a factor
(1� e2)�3/2 ≈ 1.003. The planetary model of Bretagnon (1974)
lists a phase constant for the Uranus term of 136�.29, resulting
in a polefs p 0�.936 above thex-axis, but this does not sig-
nificantly alter the probabilities. In the original treatment of
solar system secular variations, Brouwer & van Woerkom
(1950) obtained a value ofg6 p �2�.903 yr�1, which for a given
Cassini state distancevC would imply a largerl by ∼0.004.
However, the more recent value of Bretagnon (1974),g6 p
�2�.99984 yr�1, is very close to the A86 result we have used.

Finally, a smaller free component than the present 3�.12 obliq-
uity implies that either Jupiter formed with a spin axis nearly
perpendicular to its orbit plane or some as yet unknown damp-
ing mechanism has decayed the free obliquity. Damping could
also affect the Cassini state position (Ward & de Campli 1979),
but as it is likely that Saturn currently librates about its forced-
pole position with an amplitude of∼31� (WH; HW), this seems
to generally argue against such a damping mechanism.
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the Jovian spin-axis position relative to the Cassini state as-
sociated with Uranus’s perturbations, and W. Hubbard, D. Ste-
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supported by NASA’s Planetary Geology and Geophysics
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