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Satellite formation as a byproduct of large
scale planetary impacts is the likely origin of the
Earth’s moon [1-4] and is a strong contender for
the formation of the Pluto-Charon pair as well
[5,6]. Some binaries in the asteroid and Kuiper
belts might also be the result of impacts. If the
process passes through an intermediate stage
involving a Roche interior disk, the majority of this
material is driven into the primary as the disk
viscously spreads. Here we describe a tidal
mechanism that could inhibit inward diffusion and
increase the fraction of material available for
satellite formation.

The tidal interaction between a planet and
an isolated satellite is a well-studied process that
leads to the transfer of angular momentum between
the planet's spin and the orbit of the satellite.
When modeling the tidal evolution of systems of
multiple satellites, the standard assumption is that,
on average, each satellite interacts only with its
own tidal bulge and not with tidal bulges raised by
other satellites. However, this is not necessarily a
good assumption when the motions of satellites are
correlated (e.g., in a mean-motion resonance) or
when interactions among all orbiting bodies lead to
collective behavior. In such cases, the cross-
interactions among all orbiting bodies and their
tides need to be considered. For example, non-
axisymmetric disk structures such as spiral waves
could themselves raise tides and affect angular
momentum exchange. The ultimate efficacy of the
mechanism will depend on the complex behavior of
a specific disk. Here we are content to determine
the tidal torque due to a generic spiral wave of the
form,
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which illustrates some of the interesting features of
the process. In this expression, @, represents the
surface density perturbation, k(r) is the
wavenumber, m is the number of spiral arms, and st
is the pattern speed of the wave.

We begin by writing down the standard

gravitational potential at a point on the planet’s
equator (R, ©) due to an orbiting mass,

dM = o (r',0")r'do dr Q?)
at(r’, 9')[7), ie.,
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A useful expansion of the Legendre polynomial
P (cosd) is [8]
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with I'(z)representing the Gamma function, L =
(n/2) for n even, and (n-1)/2 for n odd. The total
potential, ®(R,0) = [ uxd® . is found by
integrating over the disk. Interestingly, it turns out
that only » > m contribute and even (odd) m will
interact only with even (odd) Legendre

polynomials. For a given m we get
o = Eztnd)m,p where
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The primary’s tidal response potential for each

component, tI>m, ;» is of the form,
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where k, and & are the Love number and tidal lag
angle respectively [7]. The final step is to integrate
the torque exerted on a mass element of the disk,

dT, = dMZ;. (3U, /30) ®)

over the disk.

There is an important subtlety, however,
involving the lag angle. The usual procedure is to
assume & is proportional to the forcing frequency
as seen from the surface of the planet rotating at
frequency w. For an individual moonlet with
mean motion , & « w -Q, indicating the well
known result that moonlets exterior (interior) to
corotation have a leading (trailing) tidal bulge and
gain (lose) angular momentum. On the other hand,
if the nonaxisymmetric signature of the disk rotates
at a constant pattern speed, st’ the phase lag
6« - Q , everywhere, irrespective of the local
orbital mean motion. Particles stream in and out of
the spiral arms, but are continuously replaced so
that only the pattern’s rotation produces a
discernable time variation in the total potential.
For a constant &, the total torque is

T, = mk,sinmd)[G(no RHYRIL .oa, Ani (9)

where

A = lﬁo 1(x)x -(m+2D), 'ﬁ‘t‘aﬁc (10)

m,l

with £ = kR. By comparison, the angular
momentum flux due to the gravitational torque
from an m-armed wave is of order [9]
F = mn’GolR3k’.

Both the Love number and sin(m & ) could
be large for the post-impact planet in which a
debris disk is generated. This suggests that if the
disk evolves primarily via gravitational torques
from low m waves, their tidal interaction with the
planet could modify the disk angular momentum
during the process. Since a disk tends to fragment
beyond the Roche distance, both its outer edge and
the planet’s surface are boundaries that could
reflect waves and lead to a standing wave pattern.

This can be regarded as a superposition of outward
traveling trailing waves and inward traveling
leading waves. However, the torque of eqn. (9)
does not depend on the sign of & so that the total
torque is found by doubling T,

Is there a mechanism that could excite
large amplitude density waves in a circumplanetary
disk not subject to strong satellite perturbations?
One possibility is the so-called viscous over-
stability [10,11]. This causes the amplitude of a
traveling wave to grow if d(ov)/do > 0, wherev
is the disk viscosity. If the effective viscosity is
induced by incipient gravitational instability [12],
v .= G?6%Q3, and there is a strong positive
gradient of order ~3v .., which should lead to
growth. Thus even weak perturbations by a
satellite starting to form beyond the Roche distance
could be amplified. Ifthe growth is limited by non-
linear effects, the amplitudes could be substantial
and the planet could tidally deposit angular
momentum into the disk, resulting is a smaller
fraction diffusing inward.
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