
THE EVECTION RESONANCE AND THE ANGULAR MOMENTUM OF THE 
EARTH-MOON SYSTEM.  Wm. R. Ward and R. M. Canup, Southwest Research Institute, 
Boulder, CO 80302 

 
 Recently, Cuk and Stewart [1] have 
suggested that the Earth-Moon system may 
have had its angular momentum modified by 
a solar resonance.  As the early Moon’s orbit 
expands due to tidal interaction with the 
Earth (mass M) it can be captured into the 
evection resonance, which occurs when the 
precession period of the Moon (mass m) 
equals the orbit period of the Earth [2]. Cap-
ture excites the Moon’s orbital eccentricity 
and drains angular momentum from the 
Earth-Moon system.  If the angular momen-
tum loss is substantial as recently advocated 
by Cuk and Stewart - who numerically inte-
grated the evolution of the lunar orbit with an 
ersatz version of a constant Q tidal model - 
this could allow for a broader range of lunar 
forming impact scenarios than previously 
considered viable. Here we further examine 
this possibility by using complimentary semi-
analytical methods in the context of a popular 
tidal model due to Mignard [3] that assumes a 
constant time lag, , of a body’s response to 
tidal distortion.   
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 The equations for the tidal evolution 
of the lunar semi-major axis a and eccentric-
ity e vs. / Tt tτ ≡  due to Earth tides read   
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where s is the Earth’s spin rate, n is the 
Moon’s mean motion, 1 2,, 1f f g
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and  are 
functions of e [4], R is the Earth’s radius, and 

 is a characteristic tidal time scale. Since 
tides conserve angular momentum, we can set 
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C / /ods d dL dτ τ⊕ = − ⊕ , where C⊕  is the 
Earth’s spin moment of inertia and 

 is the Moon’s or-
bital angular momentum. The corresponding 
evolution expressions due to satellite tides are 

then given by using the lunar spin rate,
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Ms , in 
place of s in the  and e   expressions and 
then multiplying the RHS by 
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which is a ratio of physical parameters of the 
two bodies that scales the relative strength of 
tides on the Moon to tides on the Earth, with 

mR , kM and MtΔ being the  Moon’s radius, 
tidal Love number, and lag time, respectively 
and k, tΔ  are the corresponding quantities for 
the Earth. The lunar spin rate is then found 
from setting / / |M M od dL d MC ds τ τ= − , where  

MC is the lunar moment of inertia. 
 In addition to the tidal rates, we need 
the Lagrange equations associated with the 
evection resonance, viz., 
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where  is the mean motion of the Earth 
about the Sun and .  The 
resonance angle  measures the difference 
between the solar longitude, 

n
3 1/2( / )R M R≡

λ , and the po-
sition of the moon’s perigee, ϖ ,  as seen 
from the Earth.  In writing , we have set 

with  to take into 
account the effect of the Earth’s spin rate on 
its oblateness, and then defined 
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 To evolve the Earth-Moon-Sun sys-
tem, we use a 2nd order Runge-Kutta routine 
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to integrate the tidal and evection equations 
together. The simulations are started with the 
Moon in a nearly circular orbit inside the 
evection resonance location.  Tides push the 
orbit outward until the resonance is encoun-
tered, at which time the eccentricity starts to 
increase rapidly.  Eventually, e becomes so 
large that the tidal expansion of the orbit 
stalls in this tidal model.  Past this point both 
a and e begin to decrease.   The system angu-
lar momentum, M ML C s C s L⊕= + + o

rs

 also de-
creases. Just how much angular momentum is 
drained by the Sun  depends on the duration 
of resonance occupancy.  
 In the left-hand figure below, with 
initial values a/R = 4, e ~ 0, 2 / 2.5s hπ = , 
φ = /2π   and an A of 9, the Moon escapes 
the evection resonance very soon after the 
semi-major axis stalls.  Once the Moon is out, 
its semi-major axis resumes an outward mi-
gration (dashed line = perigee distance), 
while the eccentricity undergoes a slow in-
crease.  This is qualitatively similar to some 
earlier investigations of this mechanism [4].  
The bottom panel shows the normalized sys-
tem angular momentum, , which 
has a starting value of 0.64, but is only 

slightly changed by the time of escape and 
remains constant thereafter.   
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 By contrast, the right-hand figure 
shows the evolution with the same initial 
conditions except for the starting value of the 
resonance angle, .  Here, resonance 
escape occurs late in the evolution, after the 
orbit has contracted back to a ~ 6R.  By then, 
significant angular momentum has been re-
moved from the system, leaving  pretty 
close to its current value of 0.35. This is 
qualitatively similar to the results of Cuk and 
Stewart [1].  Both types of outcomes appear 
possible with this tidal model. 
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